当前位置: 代码迷 >> 综合 >> 【图论】Laplacian matrix
  详细解决方案

【图论】Laplacian matrix

热度:93   发布时间:2023-12-29 07:26:22.0

原文阅读

Laplacian matrix

Laplacian matrix是图论数学领域的一个概念,又名graph Laplacian, admittance matrix, Kirchhoff matrixdiscrete Laplacian,是一个图的矩阵表示。

Definition

Laplacian matrix for simple graphs

给定一个有nnn个节点的简单图GGG,它的Laplacian矩阵Ln×n\bf{L}_{n\times n}Ln×n?可以定义为
L=D?A,{\bf L} = {\bf D} - {\bf A}, L=D?A,
其中,D\bf{D}D是一个degree矩阵,A\bf{A}A是一个adjacency矩阵。对于simple图,A\bf{A}A是一个对角线上元素为0的二值矩阵。

对于directed图,indegree或outdegree都可能用到,完全取决于应用。

L\bf{L}L元素为
Li,j:={deg?(vi)if i=j?1if i≠jand vi?vj0otherwise,{\bf L}_{i,j} := \left \{ \begin{aligned}\deg(v_i) ~~~ & \text{if} ~ i = j\\-1 ~~~ & \text{if} ~ i \neq j ~\text{and}~ v_i \sim v_j \\0 ~~~ & \text{otherwise}\end{aligned}\right., Li,j?:=??????deg(vi?)   ?1   0   ?if i=jif i?=j and vi??vj?otherwise?,
其中,?\sim?表示viv_ivi?vjv_jvj?邻接。

Symmetric normalized Laplacian

对称归一化Laplacian矩阵被定义为
Lsys:=D?12LD?12=I?D?12AD?12.{\bf L}^{\text{sys}} := {\bf D}^{-\frac{1}{2}} {\bf L} {\bf D}^{-\frac{1}{2}} = {\bf I} - {\bf D}^{-\frac{1}{2}} {\bf A} {\bf D}^{-\frac{1}{2}}. Lsys:=D?21?LD?21?=I?D?21?AD?21?.
Lsys{\bf L}^{\text{sys}}Lsys元素为
Li,jsys:={1if i=janddeg?(vi)≠0?1deg?(vi)deg?(vj)if i≠jand vi?vj0otherwise.{\bf L}_{i,j}^{\text{sys}} := \left \{ \begin{aligned}1 ~~~ & \text{if} ~ i = j ~ \text{and} \deg(v_i) \neq 0\\-\frac{1}{\sqrt{\deg(v_i) \deg(v_j)}} ~~~ & \text{if} ~ i \neq j ~\text{and}~ v_i \sim v_j \\0 ~~~ & \text{otherwise}\end{aligned}\right.. Li,jsys?:=??????????1   ?deg(vi?)deg(vj?) ?1?   0   ?if i=j anddeg(vi?)?=0if i?=j and vi??vj?otherwise?.

Random walk normalized Laplacian

随机游走归一化Laplacian矩阵定义为
Lrw:=D?1L=I?D?1A.{\bf L}^{\text{rw}} := {\bf D}^{-1} {\bf L} = {\bf I} - {\bf D}^{-1} {\bf A}. Lrw:=D?1L=I?D?1A.
rwsys{\bf rw}^{\text{sys}}rwsys元素为
Li,jrw:={1if i=janddeg?(vi)≠0?1deg?(vi)if i≠jand vi?vj0otherwise.{\bf L}_{i,j}^{\text{rw}} := \left \{ \begin{aligned}1 ~~~ & \text{if} ~ i = j ~ \text{and} \deg(v_i) \neq 0\\-\frac{1}{\sqrt{\deg(v_i)}} ~~~ & \text{if} ~ i \neq j ~\text{and}~ v_i \sim v_j \\0 ~~~ & \text{otherwise}\end{aligned}\right.. Li,jrw?:=??????????1   ?deg(vi?) ?1?   0   ?if i=j anddeg(vi?)?=0if i?=j and vi??vj?otherwise?.

Generalized Laplacian

广义Laplacian被定义为
Qi,jrw:={<0if i=janddeg?(vi)≠0=0if i≠jand vi?vjany number   otherwise.{\bf Q}_{i,j}^{\text{rw}} := \left \{ \begin{aligned}< 0 ~~~ & \text{if} ~ i = j ~ \text{and} \deg(v_i) \neq 0\\= 0 ~~~ & \text{if} ~ i \neq j ~\text{and}~ v_i \sim v_j \\\text{any number} ~~~ & \text{otherwise}\end{aligned}\right.. Qi,jrw?:=??????<0   =0   any number   ?if i=j anddeg(vi?)?=0if i?=j and vi??vj?otherwise?.

Notice the ordinary Laplacian is a generalized Laplacian.

Example

Labelled graph

一个labelled graph

Degree matrix

(200000030000002000000300000030000001)\left (\begin{matrix}2 & 0 & 0 & 0 & 0 & 0\\0 & 3 & 0 & 0 & 0 & 0\\0 & 0 & 2 & 0 & 0 & 0\\0 & 0 & 0 & 3 & 0 & 0\\0 & 0 & 0 & 0 & 3 & 0\\0 & 0 & 0 & 0 & 0 & 1\\\end{matrix}\right ) ?????????200000?030000?002000?000300?000030?000001??????????

Adjacency matrix

(010010101010010100001011110130000100)\left (\begin{matrix}0 & 1 & 0 & 0 & 1 & 0\\1 & 0 & 1 & 0 & 1 & 0\\0 & 1 & 0 & 1 & 0 & 0\\0 & 0 & 1 & 0 & 1 & 1\\1 & 1 & 0 & 1 & 3 & 0\\0 & 0 & 0 & 1 & 0 & 0\\\end{matrix}\right ) ?????????010010?101010?010100?001011?110130?000100??????????

Laplacian matrix

(2?100?10?13?10?100?12?10000?13?1?1?1?10?130000?101)\left (\begin{matrix}2 & -1 & 0 & 0 & -1 & 0\\-1 & 3 & -1 & 0 & -1 & 0\\0 & -1 & 2 & -1 & 0 & 0\\0 & 0 & -1 & 3 & -1 & -1\\-1 & -1 & 0 & -1 & 3 & 0\\0 & 0 & 0 & -1 & 0 & 1\\\end{matrix}\right ) ?????????2?100?10??13?10?10?0?12?100?00?13?1?1??1?10?130?000?101??????????

Properties

对于无向图GGG,其Laplacian矩阵为L{\bf L}LL{\bf L}L特征值为λ0≤λ1≤?λn?1\lambda_0 \leq \lambda_1 \leq \cdots \lambda_{n - 1}λ0?λ1??λn?1?,则有:

  • L{\bf L}L是对称的;

  • L{\bf L}L是正定的(λi≥0,?i\lambda_i \geq 0, \forall iλi?0,?i);

  • ∑i=0n?1Li,j=∑j=0n?1Li,j=1\sum_{i = 0}^{n - 1} {\bf L}_{i,j} = \sum_{j = 0}^{n - 1} {\bf L}_{i,j} = 1i=0n?1?Li,j?=j=0n?1?Li,j?=1

  • λ0=0,v0=(1,1,?,1)\lambda_0 = 0,~ \pmb{v}_0 = (1, 1, \cdots, 1)λ0?=0, vvv0?=(1,1,?,1)

  • Laplacian是nnn维向量空间上的函数算子f:V→Rf:{ V}\rightarrow\mathbb{R}f:VR

    Lf(vi)=∑vj?viwi,j(f(vi)?f(vj){\bf L} f(v_i) = \sum_{v_j \sim v_i} w_{i,j} (f(v_i) - f(v_j)Lf(vi?)=vj??vi??wi,j?(f(vi?)?f(vj?)

  • 二次型:

    fTLf(vi)=12∑ei,jwi,j(f(vi)?f(vj){f^T {\bf L} f}(v_i) = \frac{1}{2}\sum_{e_{i,j}} w_{i,j} (f(v_i) - f(v_j)fTLf(vi?)=21?ei,j??wi,j?(f(vi?)?f(vj?)

  • ……

Incidence matrix

Incidence matrix刻画了两类对象之间的关系,在graph theory中有广泛的应用。

Undirected and directed graphs

对于图G=(V,E)G=(V,E)G=(V,E)nnn个顶点,mmm条边($|V| \times |E| = m \times n $),有两种incidence矩阵:

  • Unoriented incidence matrix

    • 对于无向图

    Bi,j:={1vi?ej0otherwise.{\bf B}_{i,j} := \left \{ \begin{aligned} 1 ~~~ &v_i - e_j\\ 0 ~~~ &\text{otherwise} \end{aligned} \right. . Bi,j?:={ 1   0   ?vi??ej?otherwise?.

    • 对于有向图

    Bi,j:={1vi→ej1vi←ej0otherwise.{\bf B}_{i,j} := \left \{ \begin{aligned} 1 ~~~ &v_i \rightarrow e_j\\ 1 ~~~ &v_i \leftarrow e_j\\ 0 ~~~ &\text{otherwise} \end{aligned} \right. . Bi,j?:=??????1   1   0   ?vi?ej?vi?ej?otherwise?.

  • Oriented incidence matrix

    • 对于无向图:无向图的有向关联矩阵是图的任何方向的关联矩阵。

    • 对于有向图

    Bi,j:={1vi→ej?1vi←ej0otherwise.{\bf B}_{i,j} := \left \{ \begin{aligned} 1 ~~~ &v_i \rightarrow e_j\\ -1 ~~~ &v_i \leftarrow e_j\\ 0 ~~~ &\text{otherwise} \end{aligned} \right. . Bi,j?:=??????1   ?1   0   ?vi?ej?vi?ej?otherwise?.

Boundary operator

图的boundary operator定义为:
?:E(G)→V(G)\vartheta:E(G) \rightarrow V(G) ?:E(G)V(G)
而图的co-boundary operator定义为:
π:V(G)→E(G)\pi:V(G) \rightarrow E(G) π:V(G)E(G)

Discrete differential operator

Incidence矩阵是离散的微分算子。

  • f→Bff \rightarrow {\bf B} ffBf是一个co-boundary mapping;

  • 特别地,(Bf)(ei,j)f(vj)?f(vi)({\bf B} f) (e_{i,j})f(v_j) - f(v_i)(Bf)(ei,j?)f(vj?)?f(vi?)

  • Example:
    (f(2)?f(1)f(1)?f(3)f(3)?f(2)f(4)?f(2))=(?110010?100?1100?101)(f(1)f(2)f(3)f(4))\left (\begin{matrix}f(2) - f(1) \\f(1) - f(3) \\f(3) - f(2) \\f(4) - f(2)\end{matrix}\right )= \left (\begin{matrix}-1 & 1 & 0 & 0\\1 & 0 & -1 & 0\\0 & -1 & 1 & 0\\0 & -1 & 0 & 1\\\end{matrix} \right )\left (\begin{matrix}f(1) \\f(2) \\f(3) \\f(4)\end{matrix}\right ) ?????f(2)?f(1)f(1)?f(3)f(3)?f(2)f(4)?f(2)??????=??????1100?10?1?1?0?110?0001???????????f(1)f(2)f(3)f(4)??????

Laplacian & incidence

L=BBT{\bf L} = {\bf B} {\bf B}^T L=BBT

  相关解决方案