当前位置: 代码迷 >> 综合 >> 【YOLOV5-5.x 源码解读】train.py
  详细解决方案

【YOLOV5-5.x 源码解读】train.py

热度:11   发布时间:2023-12-14 09:28:38.0

目录

  • 前言
  • 0、导入需要的包和基本配置
  • 1、设置opt参数
  • 2、main函数
    • 2.1、logging和wandb初始化
    • 2.2、判断是否使用断点续训resume, 读取参数
    • 2.3、DDP mode设置
    • 2.4、不进化算法,正常训练
    • 2.5、遗传进化算法,边进化边训练
  • 3、train
    • 3.1、载入参数
    • 3.2、初始化参数和配置信息
    • 3.3、model
    • 3.4、优化器
    • 3.5、学习率
    • 3.6、训练前最后准备
    • 3.7、数据加载
    • 3.8、训练
    • 3.9、结尾
  • 4、run
  • 总结
  • Reference

前言

源码: YOLOv5源码.
导航: 【YOLOV5-5.x 源码讲解】整体项目文件导航.
注释版全部项目文件已上传至GitHub: yolov5-5.x-annotations.

这个文件是yolov5的训练脚本。

0、导入需要的包和基本配置

import argparse               # 解析命令行参数模块
import logging                # 日志模块
import math                   # 数学公式模块
import os                     # 与操作系统进行交互的模块 包含文件路径操作和解析
import random                 # 生成随机数模块
import sys                    # sys系统模块 包含了与Python解释器和它的环境有关的函数
import time                   # 时间模块 更底层
import warnings               # 发出警告信息模块
from copy import deepcopy     # 深度拷贝模块
from pathlib import Path      # Path将str转换为Path对象 使字符串路径易于操作的模块
from threading import Thread  # 线程操作模块import numpy as np                # numpy数组操作模块
import torch.distributed as dist  # 分布式训练模块
import torch.nn as nn             # 对torch.nn.functional的类的封装 有很多和torch.nn.functional相同的函数
import torch.nn.functional as F   # PyTorch函数接口 封装了很多卷积、池化等函数
import torch.optim as optim       # PyTorch各种优化算法的库
import torch.optim.lr_scheduler as lr_scheduler  # 学习率模块
import torch.utils.data           # 数据操作模块
import yaml                       # 操作yaml文件模块
from torch.cuda import amp        # PyTorch amp自动混合精度训练模块
from torch.nn.parallel import DistributedDataParallel as DDP  # 多卡训练模块
from torch.utils.tensorboard import SummaryWriter  # tensorboard模块
from tqdm import tqdm  # 进度条模块FILE = Path(__file__).absolute()  # FILE = WindowsPath 'F:\yolo_v5\yolov5-U\detect.py'
# 将'F:/yolo_v5/yolov5-U'加入系统的环境变量 该脚本结束后失效
sys.path.append(FILE.parents[0].as_posix())  # add yolov5/ to pathimport val  # for end-of-epoch mAP
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.datasets import create_dataloader
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \check_requirements, print_mutation, set_logging, one_cycle, colorstr
from utils.google_utils import attempt_download
from utils.loss import ComputeLoss
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution, plot_lr_scheduler, plot_results_overlay
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
from utils.metrics import fitness# 初始化日志模块
logger = logging.getLogger(__name__)# pytorch 分布式训练初始化
# https://pytorch.org/docs/stable/elastic/run.html
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # 这个 Worker 是这台机器上的第几个 Worker
RANK = int(os.getenv('RANK', -1))              # 这个 Worker 是全局第几个 Worker
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))   # 总共有几个 Worker

1、设置opt参数

def parse_opt(known=False):"""weights: 权重文件cfg: 模型配置文件 包括nc、depth_multiple、width_multiple、anchors、backbone、head等data: 数据集配置文件 包括path、train、val、test、nc、names、download等hyp: 初始超参文件epochs: 训练轮次batch-size: 训练批次大小img-size: 输入网络的图片分辨率大小resume: 断点续训, 从上次打断的训练结果处接着训练 默认Falsenosave: 不保存模型 默认False(保存) True: only test final epochnotest: 是否只测试最后一轮 默认False True: 只测试最后一轮 False: 每轮训练完都测试mAPworkers: dataloader中的最大work数(线程个数)device: 训练的设备single-cls: 数据集是否只有一个类别 默认Falserect: 训练集是否采用矩形训练 默认Falsenoautoanchor: 不自动调整anchor 默认False(自动调整anchor)evolve: 是否进行超参进化 默认Falsemulti-scale: 是否使用多尺度训练 默认Falselabel-smoothing: 标签平滑增强 默认0.0不增强 要增强一般就设为0.1adam: 是否使用adam优化器 默认False(使用SGD)sync-bn: 是否使用跨卡同步bn操作,再DDP中使用 默认Falselinear-lr: 是否使用linear lr 线性学习率 默认False 使用cosine lrcache-image: 是否提前缓存图片到内存cache,以加速训练 默认Falseimage-weights: 是否使用图片采用策略(selection img to training by class weights) 默认False 不使用bucket: 谷歌云盘bucket 一般用不到project: 训练结果保存的根目录 默认是runs/trainname: 训练结果保存的目录 默认是exp 最终: runs/train/expexist-ok: 如果文件存在就ok不存在就新建或increment name 默认False(默认文件都是不存在的)quad: dataloader取数据时, 是否使用collate_fn4代替collate_fn 默认Falsesave_period: Log model after every "save_period" epoch 默认-1 不需要log model 信息artifact_alias: which version of dataset artifact to be stripped 默认lastest 貌似没用到这个参数?local_rank: rank为进程编号 -1且gpu=1时不进行分布式 -1且多块gpu使用DataParallel模式entity: wandb entity 默认Noneupload_dataset: 是否上传dataset到wandb tabel(将数据集作为交互式 dsviz表 在浏览器中查看、查询、筛选和分析数据集) 默认Falsebbox_interval: 设置界框图像记录间隔 Set bounding-box image logging interval for W&B 默认-1 opt.epochs // 10"""parser = argparse.ArgumentParser()# --------------------------------------------------- 常用参数 ---------------------------------------------parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='initial weights path')parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')parser.add_argument('--data', type=str, default='data/VOC.yaml', help='dataset.yaml path')parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path')parser.add_argument('--epochs', type=int, default=20)parser.add_argument('--batch-size', type=int, default=4, help='total batch size for all GPUs')parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')parser.add_argument('--nosave', action='store_true', help='True only save final checkpoint')parser.add_argument('--notest', action='store_true', help='True only test final epoch')parser.add_argument('--workers', type=int, default=0, help='maximum number of dataloader workers')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')# --------------------------------------------------- 数据增强参数 ---------------------------------------------parser.add_argument('--rect', action='store_true', help='rectangular training')parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')parser.add_argument('--evolve', default=False, action='store_true', help='evolve hyperparameters')parser.add_argument('--multi-scale', default=True, action='store_true', help='vary img-size +/- 50%%')parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')parser.add_argument('--linear-lr', default=False, action='store_true', help='linear LR')parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')parser.add_argument('--image-weights', default=True, action='store_true', help='use weighted image selection for training')# --------------------------------------------------- 其他参数 ---------------------------------------------parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')parser.add_argument('--project', default='runs/train', help='save to project/name')parser.add_argument('--name', default='exp', help='save to project/name')parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')parser.add_argument('--quad', action='store_true', help='quad dataloader')parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, wins do not modify')# --------------------------------------------------- 三个W&B(wandb)参数 ---------------------------------------------parser.add_argument('--entity', default=None, help='W&B entity')parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')# parser.parse_known_args()# 作用就是当仅获取到基本设置时,如果运行命令中传入了之后才会获取到的其他配置,不会报错;而是将多出来的部分保存起来,留到后面使用opt = parser.parse_known_args()[0] if known else parser.parse_args()return opt

2、main函数

2.1、logging和wandb初始化

def main(opt):# 1、logging和wandb初始化# 日志初始化set_logging(RANK)if RANK in [-1, 0]:# 输出所有训练opt参数 train: ...print(colorstr('train: ') + ', '.join(f'{
      k}={
      v}' for k, v in vars(opt).items()))# 检查代码版本是否是最新的 github: ...check_git_status()# 检查requirements.txt所需包是否都满足 requirements: ...check_requirements(exclude=['thop'])# wandb logging初始化wandb_run = check_wandb_resume(opt)

2.2、判断是否使用断点续训resume, 读取参数

使用断点续训 就从last.pt中读取相关参数;不使用断点续训 就从文件中读取相关参数

    # 2、判断是否使用断点续训resume, 读取参数if opt.resume and not wandb_run:# 使用断点续训 就从last.pt中读取相关参数# 如果resume是str,则表示传入的是模型的路径地址# 如果resume是True,则通过get_lastest_run()函数找到runs为文件夹中最近的权重文件last.ptckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' # check# 相关的opt参数也要替换成last.pt中的opt参数with open(Path(ckpt).parent.parent / 'opt.yaml') as f:opt = argparse.Namespace(**yaml.safe_load(f))  # replaceopt.cfg, opt.weights, opt.resume = '', ckpt, True  # reinstatelogger.info('Resuming training from %s' % ckpt)    # printelse:# 不使用断点续训 就从文件中读取相关参数# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp)  # check filesassert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'# 将opt.img_size扩展为[train_img_size, test_img_size]opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))# opt.evolve=False,opt.name='exp' opt.evolve=True,opt.name='evolve'opt.name = 'evolve' if opt.evolve else opt.name# 根据opt.project生成目录 如: runs/train/exp18opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve))

2.3、DDP mode设置

    # 3、DDP mode设置# 选择设备 cpu/cuda:0device = select_device(opt.device, batch_size=opt.batch_size)if LOCAL_RANK != -1:# LOCAL_RANK != -1 进行多GPU训练from datetime import timedeltaassert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'torch.cuda.set_device(LOCAL_RANK)# 根据GPU编号选择设备device = torch.device('cuda', LOCAL_RANK)# 初始化进程组 distributed backenddist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=60))assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count'assert not opt.image_weights, '--image-weights argument is not compatible with DDP training'

2.4、不进化算法,正常训练

    # 4、不使用进化算法 正常Trainif not opt.evolve:# 如果不进行超参进化 那么就直接调用train()函数,开始训练train(opt.hyp, opt, device)# 如果是使用多卡训练, 那么销毁进程组if WORLD_SIZE > 1 and RANK == 0:_ = [print('Destroying process group... ', end=''), dist.destroy_process_group(), print('Done.')]

2.5、遗传进化算法,边进化边训练

    # 5、遗传进化算法,边进化边训练# Evolve hyperparameters (optional)# 否则使用超参进化算法(遗传算法) 求出最佳超参 再进行训练else:# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)# 超参进化列表 (突变规模, 最小值, 最大值)meta = {
    'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr'box': (1, 0.02, 0.2),  # box loss gain'cls': (1, 0.2, 4.0),  # cls loss gain'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight'iou_t': (0, 0.1, 0.7),  # IoU training threshold'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)'scale': (1, 0.0, 0.9),  # image scale (+/- gain)'shear': (1, 0.0, 10.0),  # image shear (+/- deg)'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)'mosaic': (1, 0.0, 1.0),  # image mixup (probability)'mixup': (1, 0.0, 1.0)}  # image mixup (probability)with open(opt.hyp) as f:hyp = yaml.safe_load(f)  # 载入初始超参assert LOCAL_RANK == -1, 'DDP mode not implemented for --evolve'opt.notest, opt.nosave = True, True  # only test/save final epoch# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indicesyaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml'  # 超参进化后文件保存地址if opt.bucket:os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt if exists"""使用遗传算法进行参数进化 默认是进化300代这里的进化算法是:根据之前训练时的hyp来确定一个base hyp再进行突变;如何根据?通过之前每次进化得到的results来确定之前每个hyp的权重有了每个hyp和每个hyp的权重之后有两种进化方式;1.根据每个hyp的权重随机选择一个之前的hyp作为base hyp,random.choices(range(n), weights=w)2.根据每个hyp的权重对之前所有的hyp进行融合获得一个base hyp,(x * w.reshape(n, 1)).sum(0) / w.sum()evolve.txt会记录每次进化之后的results+hyp每次进化时,hyp会根据之前的results进行从大到小的排序;再根据fitness函数计算之前每次进化得到的hyp的权重再确定哪一种进化方式,从而进行进化"""for _ in range(300):  # generations to evolveif Path('evolve.txt').exists():  # if evolve.txt exists: select best hyps and mutate# Select parent(s)# 选择超参进化方式 只用single和weighted两种parent = 'single'  # parent selection method: 'single' or 'weighted'# 加载evolve.txtx = np.loadtxt('evolve.txt', ndmin=2)# 选取至多前五次进化的结果n = min(5, len(x))  # number of previous results to considerx = x[np.argsort(-fitness(x))][:n]  # top n mutations# 根据resluts计算hyp权重w = fitness(x) - fitness(x).min() + 1E-6  # weights (sum > 0)# 根据不同进化方式获得base hypif parent == 'single' or len(x) == 1:# x = x[random.randint(0, n - 1)] # random selectionx = x[random.choices(range(n), weights=w)[0]]  # weighted selectionelif parent == 'weighted':x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination# Mutate 超参进化mp, s = 0.8, 0.2  # mutation probability 突变概率, sigmanpr = np.randomnpr.seed(int(time.time()))# 获取突变初始值g = np.array([x[0] for x in meta.values()])  # gains 0-1ng = len(meta)v = np.ones(ng)# 设置突变while all(v == 1):  # mutate until a change occurs (prevent duplicates)v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)# 将突变添加到base hyp上# [i+7]是因为x中前7个数字为results的指标(P,R,mAP,F1,test_loss=(box,obj,cls)),之后才是超参数hypfor i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)hyp[k] = float(x[i + 7] * v[i])  # mutate# Constrain to limits 限制超参再规定范围for k, v in meta.items():hyp[k] = max(hyp[k], v[1])  # lower limithyp[k] = min(hyp[k], v[2])  # upper limithyp[k] = round(hyp[k], 5)  # significant digits# 训练 使用突变后的参超 测试其效果results = train(hyp.copy(), opt, device)# Write mutation results# 将结果写入results 并将对应的hyp写到evolve.txt evolve.txt中每一行为一次进化的结果# 每行前七个数字 (P, R, mAP, F1, test_losses(GIOU, obj, cls)) 之后为hyp# 保存hyp到yaml文件print_mutation(hyp.copy(), results, yaml_file, opt.bucket)# Plot resultsplot_evolution(yaml_file, Path(opt.save_dir))print(f'Hyperparameter evolution complete. Best results saved as: {
      yaml_file}\n'f'Command to train a new model with these hyperparameters: $ python train.py --hyp {
      yaml_file}')

3、train

3.1、载入参数

def train(hyp, opt, device):""":params hyp: data/hyps/hyp.scratch.yaml hyp dictionary:params opt: main中opt参数:params device: 当前设备"""

3.2、初始化参数和配置信息

初始化随机数种子 + opt参数 + 路径信息 + 超参设置保存 + 保存opt + 加载数据配置信息 + 打印日志信息(logger + wandb) + 其他参数(plots、cuda、nc、names、is_coco)

    # ----------------------------------------------- 初始化参数和配置信息 ----------------------------------------------# 设置一系列的随机数种子init_seeds(1 + RANK)save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, notest, nosave, workers, = \opt.save_dir, opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \opt.resume, opt.notest, opt.nosave, opt.workerssave_dir = Path(save_dir)  # 保存训练结果的目录 如runs/train/exp18wdir = save_dir / 'weights'  # 保存权重路径 如runs/train/exp18/weightswdir.mkdir(parents=True, exist_ok=True)  # make dirlast = wdir / 'last.pt'  # runs/train/exp18/weights/last.ptbest = wdir / 'best.pt'  # runs/train/exp18/weights/best.ptresults_file = save_dir / 'results.txt'  # runs/train/exp18/results.txt# Hyperparameters超参if isinstance(hyp, str):with open(hyp) as f:hyp = yaml.safe_load(f)  # load hyps dict 加载超参信息# 日志输出超参信息 hyperparameters: ...logger.info(colorstr('hyperparameters: ') + ', '.join(f'{
      k}={
      v}' for k, v in hyp.items()))# Save run settingswith open(save_dir / 'hyp.yaml', 'w') as f:yaml.safe_dump(hyp, f, sort_keys=False)# 保存optwith open(save_dir / 'opt.yaml', 'w') as f:yaml.safe_dump(vars(opt), f, sort_keys=False)# Configure# 是否需要画图: 所有的labels信息、前三次迭代的barch、训练结果等plots = not evolve  # create plotscuda = device.type != 'cpu'# data_dict: 加载VOC.yaml中的数据配置信息 dictwith open(data) as f:data_dict = yaml.safe_load(f)  # data dict# Loggersloggers = {
    'wandb': None, 'tb': None}  # loggers dictif RANK in [-1, 0]:# TensorBoardif not evolve:prefix = colorstr('tensorboard: ')  # 彩色打印信息logger.info(f"{
      prefix}Start with 'tensorboard --logdir {
      opt.project}', view at http://localhost:6006/")loggers['tb'] = SummaryWriter(str(save_dir))# W&B wandb日志打印相关opt.hyp = hyp  # add hyperparametersrun_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else Nonerun_id = run_id if opt.resume else None  # start fresh run if transfer learningwandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict)loggers['wandb'] = wandb_logger.wandbif loggers['wandb']:data_dict = wandb_logger.data_dictweights, epochs, hyp = opt.weights, opt.epochs, opt.hyp  # may update weights, epochs if resuming# nc: number of classes 数据集有多少种类别nc = 1 if single_cls else int(data_dict['nc'])# names: 数据集所有类别的名字names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class namesassert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, data)  # check# 当前数据集是否是coco数据集(80个类别) save_json和coco评价is_coco = data.endswith('coco.yaml') and nc == 80  # COCO dataset

3.3、model

载入模型(预训练/不预训练) + 检查数据集 + 设置数据集路径参数(train_path、test_path) + 冻结权重层

    # ============================================== 1、model =================================================# 载入模型pretrained = weights.endswith('.pt')if pretrained:# 使用预训练# torch_distributed_zero_first(RANK): 用于同步不同进程对数据读取的上下文管理器with torch_distributed_zero_first(RANK):# 这里下载是去google云盘下载, 一般会下载失败,所以建议自行去github中下载再放到weights下weights = attempt_download(weights)  # download if not found locally# 加载模型及参数ckpt = torch.load(weights, map_location=device)  # load checkpoint# ????# 这里加载模型有两种方式,一种是通过opt.cfg 另一种是通过ckpt['model'].yaml# 区别在于是否使用resume 如果使用resume会将opt.cfg设为空,按照ckpt['model'].yaml来创建模型# 这也影响了下面是否除去anchor的key(也就是不加载anchor), 如果resume则不加载anchor# 原因: 保存的模型会保存anchors,有时候用户自定义了anchor之后,再resume,则原来基于coco数据集的anchor会自己覆盖自己设定的anchor# 详情参考: https://github.com/ultralytics/yolov5/issues/459# 所以下面设置intersect_dicts()就是忽略excludemodel = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # createexclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keysstate_dict = ckpt['model'].float().state_dict()  # to FP32# 筛选字典中的键值对 把exclude删除state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersectmodel.load_state_dict(state_dict, strict=False)  # 载入模型权重logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # reportelse:# 不使用预训练model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create# 检查数据集 如果本地没有则从torch库中下载并解压数据集with torch_distributed_zero_first(RANK):check_dataset(data_dict)  # check# 数据集参数train_path = data_dict['train']test_path = data_dict['val']# 冻结权重层# 这里只是给了冻结权重层的一个例子, 但是作者并不建议冻结权重层, 训练全部层参数, 可以得到更好的性能, 当然也会更慢freeze = []  # parameter names to freeze (full or partial)for k, v in model.named_parameters():v.requires_grad = True  # train all layersif any(x in k for x in freeze):print('freezing %s' % k)v.requires_grad = False

3.4、优化器

参数设置(nbs、accumulate、hyp[‘weight_decay’]) + 分组优化(pg0、pg1、pg2) + 选择优化器 + 为三个优化器选择优化方式 + 删除变量

    # ============================================== 2、优化器 =================================================# nbs 标称的batch_size,模拟的batch_size 比如默认的话上面设置的opt.batch_size=16 -> nbs=64# 也就是模型梯度累计 64/16=4(accumulate) 次之后就更新一次模型 等于变相的扩大了batch_sizenbs = 64  # nominal batch sizeaccumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing# 根据accumulate设置超参: 权重衰减参数hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decaylogger.info(f"Scaled weight_decay = {
      hyp['weight_decay']}")  # 日志# 将模型参数分为三组(weights、biases、bn)来进行分组优化pg0, pg1, pg2 = [], [], []  # optimizer parameter groupsfor k, v in model.named_modules():if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):pg2.append(v.bias)  # biasesif isinstance(v, nn.BatchNorm2d):pg0.append(v.weight)  # no decayelif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):pg1.append(v.weight)  # apply decay# 选择优化器 并设置pg0(bn参数)的优化方式if opt.adam:optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentumelse:optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)# 设置pg1(weights)的优化方式optimizer.add_param_group({
    'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay# 设置pg2(biases)的优化方式optimizer.add_param_group({
    'params': pg2})  # add pg2 (biases)# 打印log日志 优化信息logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))  # 日志# 删除三个变量 优化代码del pg0, pg1, pg2

3.5、学习率

线性学习率 + one cycle学习率 + 实例化 scheduler + 画出学习率变化曲线

    # ============================================== 3、学习率 =================================================# Scheduler https://arxiv.org/pdf/1812.01187.pdf# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLRif opt.linear_lr:# 使用线性学习率lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf']  # linearelse:# 使用one cycle 学习率 https://arxiv.org/pdf/1803.09820.pdflf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']# 实例化 schedulerscheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)plot_lr_scheduler(optimizer, scheduler, epochs, save_dir=save_dir)  # 画出学习率变化曲线

3.6、训练前最后准备

EMA + 使用预训练 + 参数设置(gs、nl、imgsz、imgsz_test) + DP + DDP + SyncBatchNorm

    # ---------------------------------------------- 训练前最后准备 ------------------------------------------------------# EMA# 单卡训练: 使用EMA(指数移动平均)对模型的参数做平均, 一种给予近期数据更高权重的平均方法, 以求提高测试指标并增加模型鲁棒。ema = ModelEMA(model) if RANK in [-1, 0] else None# 使用预训练start_epoch, best_fitness = 0, 0.0if pretrained:# Optimizerif ckpt['optimizer'] is not None:optimizer.load_state_dict(ckpt['optimizer'])best_fitness = ckpt['best_fitness']# EMAif ema and ckpt.get('ema'):ema.ema.load_state_dict(ckpt['ema'].float().state_dict())ema.updates = ckpt['updates']# Resultsif ckpt.get('training_results') is not None:results_file.write_text(ckpt['training_results'])  # write results.txt# Epochsstart_epoch = ckpt['epoch'] + 1if resume:assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)if epochs < start_epoch:logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %(weights, ckpt['epoch'], epochs))epochs += ckpt['epoch']  # finetune additional epochsdel ckpt, state_dict# gs: 获取模型最大stride=32 [32 16 8]gs = max(int(model.stride.max()), 32)  # grid size (max stride)# nl: 有多少个detect 3nl = model.model[-1].nl  # number of detection layers (used for scaling hyp['obj'])# 获取训练图片和测试图片分辨率 imgsz=640 imgsz_test=640imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples# 是否使用DP mode# 如果rank=-1且gpu数量>1则使用DataParallel单机多卡模式 效果并不好(分布不平均)if cuda and RANK == -1 and torch.cuda.device_count() > 1:logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n''See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')model = torch.nn.DataParallel(model)# 是否使用DDP mode# 如果rank !=-1, 则使用DistributedDataParallel模式 真正的单机单卡(分布平均)if cuda and RANK != -1:model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)# SyncBatchNorm 是否使用跨卡BNif opt.sync_bn and cuda and RANK != -1:model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)logger.info('Using SyncBatchNorm()')

3.7、数据加载

加载训练集dataloader、dataset + 参数(mlc、nb) + 加载验证集testloader + 如果不使用断点续训,设置labels相关参数(labels、c) ,plots可视化数据集labels信息,检查anchors(k-means + 遗传进化算法),model半精度

    # ============================================== 4、数据加载 ===============================================# Trainloaderdataloader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect,rank=RANK, workers=workers, image_weights=opt.image_weights,quad=opt.quad, prefix=colorstr('train: '))# 获取标签中最大类别值,与类别数作比较,如果小于类别数则表示有问题mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label classassert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, data, nc - 1)nb = len(dataloader)  # number of batches# TestLoaderif RANK in [-1, 0]:testloader = create_dataloader(test_path, imgsz_test, batch_size // WORLD_SIZE * 2, gs, single_cls,hyp=hyp, cache=opt.cache_images and not notest, rect=True, rank=-1,workers=workers, pad=0.5, prefix=colorstr('val: '))[0]# 如果不使用断点续训if not resume:# 统计dataset的label信息# [6301, 5] 数据集中有6301个target [:, class+x+y+w+h] nparraylabels = np.concatenate(dataset.labels, 0)# 将labels从nparray转为tensor格式c = torch.tensor(labels[:, 0])# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency# model._initialize_biases(cf.to(device))if plots:# plots可视化数据集labels信息plot_labels(labels, names, save_dir, loggers)if loggers['tb']:loggers['tb'].add_histogram('classes', c, 0)  # 将统计结果加入TensorBoard# Check Anchors# 计算默认锚框anchor与数据集标签框的高宽比# 标签的高h宽w与anchor的高h_a宽h_b的比值 即h/h_a, w/w_a都要在(1/hyp['anchor_t'], hyp['anchor_t'])是可以接受的# 如果bpr小于98%,则根据k-mean算法聚类新的锚框if not opt.noautoanchor:check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)model.half().float()  # pre-reduce anchor precision

3.8、训练

设置/初始化一些训练要用的参数(hyp[‘box’]、hyp[‘cls’]、hyp[‘obj’]、hyp[‘label_smoothing’]、model.nc、model.hyp、model.gr、从训练样本标签得到类别权重model.class_weights、model.names、热身迭代的次数iterationsnw、last_opt_step、初始化maps和results、学习率衰减所进行到的轮次scheduler.last_epoch + 设置amp混合精度训练scaler + 初始化损失函数compute_loss + 打印日志信息) + 开始训练(注意五点:图片采样策略 + Warmup热身训练 + multi_scale多尺度训练 + amp混合精度训练 + accumulate 梯度更新策略) + 打印训练相关信息(包括当前epoch、显存、损失(box、obj、cls、total)、当前batch的target的数量和图片的size等 + Plot 前三次迭代的barch的标签框再图片中画出来并保存 + wandb ) + validation(调整学习率、scheduler.step() 、emp val.run()得到results, maps相关信息、将测试结果results写入result.txt中、wandb_logger、Update best mAP 以加权mAP fitness为衡量标准、Save model)

    # ============================================== 5、训练 ===============================================# 设置/初始化一些训练要用的参数# Model parametershyp['box'] *= 3. / nl  # scale to layershyp['cls'] *= nc / 80. * 3. / nl  # 分类损失系数hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl  # scale to image size and layershyp['label_smoothing'] = opt.label_smoothingmodel.nc = nc  # attach number of classes to modelmodel.hyp = hyp  # attach hyperparameters to modelmodel.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou) 用于loss计算# 从训练样本标签得到类别权重(和类别中的目标数即类别频率成反比)model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weightsmodel.names = names  # 获取类别名# Start trainingt0 = time.time()# 获取热身迭代的次数iterations # number of warmup iterations, max(3 epochs, 1k iterations)nw = max(round(hyp['warmup_epochs'] * nb), 1000)# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of traininglast_opt_step = -1# 初始化maps(每个类别的map)和resultsmaps = np.zeros(nc)  # mAP per classresults = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)# 设置学习率衰减所进行到的轮次,即使打断训练,使用resume接着训练也能正常衔接之前的训练进行学习率衰减scheduler.last_epoch = start_epoch - 1  # do not move# 设置amp混合精度训练 GradScaler + autocastscaler = amp.GradScaler(enabled=cuda)# 初始化损失函数compute_loss = ComputeLoss(model)  # init loss class# 打印日志信息logger.info(f'Image sizes {
      imgsz} train, {
      imgsz_test} test\n'f'Using {
      dataloader.num_workers} dataloader workers\n'f'Logging results to {
      save_dir}\n'f'Starting training for {
      epochs} epochs...')# 开始训练# start training -----------------------------------------------------------------------------------------------------for epoch in range(start_epoch, epochs):   # epochmodel.train()# Update image weights (optional) 并不一定好 默认是False的# 如果为True 进行图片采样策略(按数据集各类别权重采样)if opt.image_weights:# 根据前面初始化的图片采样权重model.class_weights(每个类别的权重 频率高的权重小)以及maps配合每张图片包含的类别数# 通过rando.choices生成图片索引indices从而进行采用 (作者自己写的采样策略,效果不一定ok)# Generate indicesif RANK in [-1, 0]:# 从训练(gt)标签获得每个类的权重 标签频率高的类权重低cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc# 得到每一张图片对应的采样权重[128]iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)# random.choices: 从range(dataset.n)序列中按照weights(参考每张图片采样权重)进行采样, 一次取一个数字 采样次数为k# 最终得到所有图片的采样顺序(参考每张图片采样权重) list [128]dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx# Broadcast if DDP 采用广播采样策略if RANK != -1:indices = (torch.tensor(dataset.indices) if RANK == 0 else torch.zeros(dataset.n)).int()dist.broadcast(indices, 0)if RANK != 0:dataset.indices = indices.cpu().numpy()# Update mosaic border# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)# dataset.mosaic_border = [b - imgsz, -b] # height, width borders# 初始化训练时打印的平均损失信息mloss = torch.zeros(4, device=device)  # mean lossesif RANK != -1:# DDP模式打乱数据,并且dpp.sampler的随机采样数据是基于epoch+seed作为随机种子,每次epoch不同,随机种子不同dataloader.sampler.set_epoch(epoch)# 进度条,方便展示信息pbar = enumerate(dataloader)logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))if RANK in [-1, 0]:# 创建进度条pbar = tqdm(pbar, total=nb)  # progress bar# train# 梯度清零optimizer.zero_grad()for i, (imgs, targets, paths, _) in pbar:   # batch# ni: 计算当前迭代次数 iterationni = i + nb * epoch  # number integrated batches (since train start)imgs = imgs.to(device, non_blocking=True).float() / 255.0  # uint8 to float32, 0-255 to 0.0-1.0# Warmup# 热身训练(前nw次迭代)热身训练迭代的次数iteration范围[1:nw] 选取较小的accumulate,学习率以及momentum,慢慢的训练if ni <= nw:xi = [0, nw]  # x interp# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())for j, x in enumerate(optimizer.param_groups):# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0# bias的学习率从0.1下降到基准学习率lr*lf(epoch) 其他的参数学习率增加到lr*lf(epoch)# lf为上面设置的余弦退火的衰减函数x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])if 'momentum' in x:x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])# Multi-scale 多尺度训练 从[imgsz*0.5, imgsz*1.5+gs]间随机选取一个尺寸(32的倍数)作为当前batch的尺寸送入模型开始训练# imgsz: 默认训练尺寸 gs: 模型最大stride=32 [32 16 8]if opt.multi_scale:sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # sizesf = sz / max(imgs.shape[2:])  # scale factorif sf != 1:ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)# 下采样imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)# Forward 混合精度训练 开启autocast的上下文with amp.autocast(enabled=cuda):# pred: [8, 3, 68, 68, 25] [8, 3, 34, 34, 25] [8, 3, 17, 17, 25]# [bs, anchor_num, grid_w, grid_h, xywh+c+20classes]pred = model(imgs)  # forward# 计算损失,包括分类损失,置信度损失和框的回归损失# loss为总损失值 loss_items为一个元组,包含分类损失、置信度损失、框的回归损失和总损失loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_sizeif RANK != -1:# 采用DDP训练 平均不同gpu之间的梯度loss *= WORLD_SIZE  # gradient averaged between devices in DDP modeif opt.quad:# 如果采用collate_fn4取出mosaic4数据loss也要翻4倍loss *= 4.# Backward 反向传播 将梯度放大防止梯度的underflow(amp混合精度训练)scaler.scale(loss).backward()# Optimize# 模型反向传播accumulate次(iterations)后再根据累计的梯度更新一次参数if ni - last_opt_step >= accumulate:# scaler.step()首先把梯度的值unscale回来# 如果梯度的值不是 infs 或者 NaNs, 那么调用optimizer.step()来更新权重,# 否则,忽略step调用,从而保证权重不更新(不被破坏)scaler.step(optimizer)  # optimizer.step 参数更新# 准备着,看是否要增大scalerscaler.update()# 梯度清零optimizer.zero_grad()if ema:# 当前epoch训练结束 更新emaema.update(model)last_opt_step = ni# 打印Print一些信息 包括当前epoch、显存、损失(box、obj、cls、total)、当前batch的target的数量和图片的size等信息if RANK in [-1, 0]:mloss = (mloss * i + loss_items) / (i + 1)  # update mean lossesmem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)  # (GB)s = ('%10s' * 2 + '%10.4g' * 6) % (f'{
      epoch}/{
      epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])pbar.set_description(s)   # 进度条显示以上信息# Plot 将前三次迭代的barch的标签框再图片中画出来并保存 train_batch0/1/2.jpgif plots and ni < 3:f = save_dir / f'train_batch{
      ni}.jpg'  # filenameThread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()if loggers['tb'] and ni == 0:  # TensorBoardwith warnings.catch_warnings():warnings.simplefilter('ignore')  # suppress jit trace warningloggers['tb'].add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])# wandb 显示信息elif plots and ni == 10 and loggers['wandb']:wandb_logger.log({
    'Mosaics': [loggers['wandb'].Image(str(x), caption=x.name) for x insave_dir.glob('train*.jpg') if x.exists()]})# end batch ------------------------------------------------------------------------------------------------# Scheduler 一个epoch训练结束后都要调整学习率(学习率衰减)# group中三个学习率(pg0、pg1、pg2)每个都要调整lr = [x['lr'] for x in optimizer.param_groups]  # for loggersscheduler.step()# validation# DDP process 0 or single-GPUif RANK in [-1, 0]:# mAP# 将model中的属性赋值给emaema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])# 判断当前epoch是否是最后一轮final_epoch = epoch + 1 == epochs# notest: 是否只测试最后一轮 True: 只测试最后一轮 False: 每轮训练完都测试mAPif not notest or final_epoch:  # Calculate mAPwandb_logger.current_epoch = epoch + 1# 测试使用的是ema(指数移动平均 对模型的参数做平均)的模型# results: [1] Precision 所有类别的平均precision(最大f1时)# [1] Recall 所有类别的平均recall# [1] map@0.5 所有类别的平均mAP@0.5# [1] map@0.5:0.95 所有类别的平均mAP@0.5:0.95# [1] box_loss 验证集回归损失, obj_loss 验证集置信度损失, cls_loss 验证集分类损失# maps: [80] 所有类别的mAP@0.5:0.95results, maps, _ = val.run(data_dict,  # 数据集配置文件地址 包含数据集的路径、类别个数、类名、下载地址等信息batch_size=batch_size // WORLD_SIZE * 2,  # bsimgsz=imgsz_test,  # test img sizemodel=ema.ema,  # ema modelsingle_cls=single_cls,  # 是否是单类数据集dataloader=testloader,  # test dataloadersave_dir=save_dir,  # 保存地址 runs/train/expnsave_json=is_coco and final_epoch, # 是否按照coco的json格式保存预测框verbose=nc < 50 and final_epoch,  # 是否打印出每个类别的mAPplots=plots and final_epoch,  # 是否可视化wandb_logger=wandb_logger,  # 网页可视化 类似于tensorboardcompute_loss=compute_loss)  # 损失函数(train)# Write 将测试结果写入result.txt中with open(results_file, 'a') as f:f.write(s + '%10.4g' * 7 % results + '\n')  # append metrics, val_loss# wandb_logger 类似tensorboard的一种网页端显示训练信息的工具tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss',  # train loss'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95','val/box_loss', 'val/obj_loss', 'val/cls_loss',  # val loss'x/lr0', 'x/lr1', 'x/lr2']  # paramsfor x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):if loggers['tb']:loggers['tb'].add_scalar(tag, x, epoch)  # TensorBoardif loggers['wandb']:wandb_logger.log({
    tag: x})  # W&B# Update best mAP 这里的best mAP其实是[P, R, mAP@.5, mAP@.5-.95]的一个加权值# fi: [P, R, mAP@.5, mAP@.5-.95]的一个加权值 = 0.1*mAP@.5 + 0.9*mAP@.5-.95fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]if fi > best_fitness:best_fitness = fiwandb_logger.end_epoch(best_result=best_fitness == fi)# Save model# 保存带checkpoint的模型用于inference或resuming training# 保存模型, 还保存了epoch, results, optimizer等信息# optimizer将不会在最后一轮完成后保存# model保存的是EMA的模型if (not nosave) or (final_epoch and not evolve):  # if saveckpt = {
    'epoch': epoch,'best_fitness': best_fitness,'training_results': results_file.read_text(),'model': deepcopy(de_parallel(model)).half(),'ema': deepcopy(ema.ema).half(),'updates': ema.updates,'optimizer': optimizer.state_dict(),'wandb_id': wandb_logger.wandb_run.id if loggers['wandb'] else None}# Save last, best and deletetorch.save(ckpt, last)if best_fitness == fi:torch.save(ckpt, best)if loggers['wandb']:if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:wandb_logger.log_model(last.parent, opt, epoch, fi, best_model=best_fitness == fi)del ckpt# end epoch ----------------------------------------------------------------------------------------------------# end training -----------------------------------------------------------------------------------------------------

3.9、结尾

打印一些信息(日志: 打印训练时间、plots可视化训练结果results1.png、confusion_matrix.png 以及(‘F1’, ‘PR’, ‘P’, ‘R’)曲线变化 、日志信息) + coco评价(只在coco数据集才会运行) + 释放显存 return results

  # 打印一些信息if RANK in [-1, 0]:# 日志: 打印训练时间logger.info(f'{
      epoch - start_epoch + 1} epochs completed in {
      (time.time() - t0) / 3600:.3f} hours.\n')# 可视化训练结果: results1.png confusion_matrix.png 以及('F1', 'PR', 'P', 'R')曲线变化 日志信息if plots:plot_results(save_dir=save_dir)  # save as results1.pngplot_results_overlay()  # save as results.pngif loggers['wandb']:files = ['results1.png', 'confusion_matrix.png', *[f'{
      x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]wandb_logger.log({
    "Results": [loggers['wandb'].Image(str(save_dir / f), caption=f) for f in filesif (save_dir / f).exists()]})# coco评价??? 只在coco数据集才会运行 一般用不到if not evolve:if is_coco:  # COCO datasetfor m in [last, best] if best.exists() else [last]:  # speed, mAP testsresults, _, _ = val.run(data_dict,batch_size=batch_size // WORLD_SIZE * 2,imgsz=imgsz_test,conf_thres=0.001,iou_thres=0.7,model=attempt_load(m, device).half(),single_cls=single_cls,dataloader=testloader,save_dir=save_dir,save_json=True,plots=False)# Strip optimizers# 模型训练完后, strip_optimizer函数将optimizer从ckpt中删除# 并对模型进行model.half() 将Float32->Float16 这样可以减少模型大小, 提高inference速度for f in last, best:if f.exists():strip_optimizer(f)  # strip optimizers# Log the stripped modelif loggers['wandb']:loggers['wandb'].log_artifact(str(best if best.exists() else last), type='model',name='run_' + wandb_logger.wandb_run.id + '_model',aliases=['latest', 'best', 'stripped'])wandb_logger.finish_run()  # 关闭wandb_logger# 释放显存torch.cuda.empty_cache()return results

4、run

这个函数使得支持指令执行这个脚本。

def run(**kwargs):# 支持指令执行这个脚本 封装train接口# Usage: import train; train.run(imgsz=320, weights='yolov5m.pt')opt = parse_opt(True)for k, v in kwargs.items():setattr(opt, k, v)main(opt)

总结

总体上代码还是比较简单的,抓住 数据 + 模型 + 学习率 + 优化器 + 训练这五步即可。

Reference

Github: Laughing-q/yolov5_annotations

CSDN Liaojiajia-2020: YOLOv5代码详解(train.py部分)

– 2021.08.17

  相关解决方案