当前位置: 代码迷 >> java >> 为什么间接增量比直接增量快?
  详细解决方案

为什么间接增量比直接增量快?

热度:26   发布时间:2023-07-27 09:31:32.0

另一个SO成员已经提出了这个问题,但令人失望地被删除了。 评论说测量是有缺陷的,没有意义。

但是我能够用下的一个小基准重现原始问题:

package bench;

import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.runner.*;
import org.openjdk.jmh.runner.options.*;
import java.util.concurrent.*;

@State(Scope.Benchmark)
public class LoopInc {

    private int getValue() {
        return ThreadLocalRandom.current().nextInt(2);
    }

    @Benchmark
    public int directInc() {
        int result = 0;
        for (int i = 0; i < 1000; i++) {
            switch (getValue()) {
                case 0:
                    break;
                case 1:
                    result++;
                    break;
            }
        }
        return result;
    }

    @Benchmark
    public int indirectInc() {
        int result = 0;
        for (int i = 0; i < 1000; i++) {
            boolean incr = false;
            switch (getValue()) {
                case 0:
                    break;
                case 1:
                    incr = true;
                    break;
            }

            if (incr) {
                result++;
            }
        }
        return result;
    }

    public static void main(String[] args) throws RunnerException {
        Options options = new OptionsBuilder()
                .include("bench.LoopInc.*")
                .warmupIterations(5)
                .measurementIterations(10)
                .forks(3)
                .timeUnit(TimeUnit.MILLISECONDS)
                .build();
        new Runner(options).run();
    }
}

基准测试显示, indirectInc工作速度提高了3倍,尽管“优化”并不明显。 可以假设indirectInc应该工作得慢一点,因为它涉及额外的中间操作。

Benchmark             Mode  Cnt    Score   Error   Units
LoopInc.directInc    thrpt   30  127,301 ± 0,202  ops/ms
LoopInc.indirectInc  thrpt   30  378,147 ± 1,144  ops/ms

java version "1.8.0_51"
Java(TM) SE Runtime Environment (build 1.8.0_51-b16)
Java HotSpot(TM) 64-Bit Server VM (build 25.51-b03, mixed mode)

是什么原因导致JIT比类似的directInc更好地编译indirectInc

好的,这就是你如何处理这些事情。

  1. 尝试重现它。 好的,它再现了:

     Benchmark Mode Cnt Score Error Units LoopInc.directInc thrpt 15 175.678 ± 1.118 ops/ms LoopInc.indirectInc thrpt 15 641.413 ± 9.722 ops/ms 
  2. 尝试使用-prof perfasm查看生成的-prof perfasm 简而言之,它产生了大量生成的代码,因此我们可能希望限制循环展开。 但是,它可能会影响性能,并且几乎可以成为原因。 所以,让我们用-XX:LoopUnrollLimit=1重新运行-XX:LoopUnrollLimit=1 好吧,得分较低,但差异仍然存在,非常好:

     Benchmark Mode Cnt Score Error Units LoopInc.directInc thrpt 15 161.147 ± 6.101 ops/ms LoopInc.indirectInc thrpt 15 489.430 ± 1.698 ops/ms 
  3. 再看看生成的代码,仍然没有任何东西突然出现在我们眼前。 嗯,这看起来很有趣。 让我们正确地做到这一点。 我们可以描述工作量吗? 当然,我们可以在-prof perfnorm的帮助下,对每个基准操作的硬件计数器进行标准化。 让我们来看看:

     Benchmark Mode Cnt Score Error Units LoopInc.directInc thrpt 15 161.875 ± 3.038 ops/ms LoopInc.directInc:·CPI thrpt 3 0.967 ± 0.196 #/op LoopInc.directInc:·L1-dcache-load-misses thrpt 3 0.394 ± 3.663 #/op LoopInc.directInc:·L1-dcache-loads thrpt 3 2149.594 ± 228.166 #/op LoopInc.directInc:·L1-dcache-store-misses thrpt 3 0.114 ± 1.001 #/op LoopInc.directInc:·L1-dcache-stores thrpt 3 1073.666 ± 96.066 #/op LoopInc.directInc:·L1-icache-load-misses thrpt 3 0.965 ± 22.984 #/op LoopInc.directInc:·LLC-loads thrpt 3 0.204 ± 2.763 #/op LoopInc.directInc:·LLC-stores thrpt 3 0.060 ± 0.633 #/op LoopInc.directInc:·branch-misses thrpt 3 536.068 ± 43.293 #/op LoopInc.directInc:·branches thrpt 3 3728.890 ± 220.539 #/op LoopInc.directInc:·cycles thrpt 3 26219.146 ± 6287.590 #/op LoopInc.directInc:·dTLB-load-misses thrpt 3 0.063 ± 0.124 #/op LoopInc.directInc:·dTLB-loads thrpt 3 2136.942 ± 165.990 #/op LoopInc.directInc:·dTLB-store-misses thrpt 3 0.022 ± 0.029 #/op LoopInc.directInc:·dTLB-stores thrpt 3 1084.787 ± 417.281 #/op LoopInc.directInc:·iTLB-load-misses thrpt 3 0.081 ± 0.333 #/op LoopInc.directInc:·iTLB-loads thrpt 3 3.623 ± 19.955 #/op LoopInc.directInc:·instructions thrpt 3 27114.052 ± 1843.720 #/op LoopInc.indirectInc thrpt 15 489.164 ± 2.692 ops/ms LoopInc.indirectInc:·CPI thrpt 3 0.281 ± 0.015 #/op LoopInc.indirectInc:·L1-dcache-load-misses thrpt 3 0.503 ± 9.071 #/op LoopInc.indirectInc:·L1-dcache-loads thrpt 3 2149.806 ± 369.040 #/op LoopInc.indirectInc:·L1-dcache-store-misses thrpt 3 0.167 ± 1.370 #/op LoopInc.indirectInc:·L1-dcache-stores thrpt 3 1073.895 ± 186.741 #/op LoopInc.indirectInc:·L1-icache-load-misses thrpt 3 0.313 ± 1.275 #/op LoopInc.indirectInc:·branch-misses thrpt 3 1.102 ± 0.375 #/op LoopInc.indirectInc:·branches thrpt 3 2143.670 ± 228.475 #/op LoopInc.indirectInc:·cycles thrpt 3 8701.665 ± 706.183 #/op LoopInc.indirectInc:·dTLB-load-misses thrpt 3 0.020 ± 0.301 #/op LoopInc.indirectInc:·dTLB-loads thrpt 3 2141.965 ± 135.852 #/op LoopInc.indirectInc:·dTLB-store-misses thrpt 3 0.002 ± 0.029 #/op LoopInc.indirectInc:·dTLB-stores thrpt 3 1070.376 ± 81.445 #/op LoopInc.indirectInc:·iTLB-load-misses thrpt 3 0.007 ± 0.135 #/op LoopInc.indirectInc:·iTLB-loads thrpt 3 0.310 ± 5.768 #/op LoopInc.indirectInc:·instructions thrpt 3 30968.207 ± 3627.540 #/op 

    哦,两个基准都有相当数量的指令。 较慢的一个需要更多的周期(这就是为什么CPI在directInc也不理想;但是, indirectInc会产生接近理想的CPI)。 如果仔细观察可能的原因:没有很多缓存未命中,没有很多TLB未命中,但缓慢的基准测试有很多分支未命中。 AHA! 现在我们知道在生成的代码中要查看什么。

  4. 让我们再看看生成的代码。 -prof perfasm方便地突出跳跃。 然后你会看到这......

    directInc

      ╭│ 0x00007fa0a82a50ff: jmp 0x00007fa0a82a5116 11.39% 16.90% ││ ↗ 0x00007fa0a82a5101: inc %edx ;*iinc ││ │ ; - org.openjdk.LoopInc::directInc@46 (line 18) 12.52% 23.11% ││ │↗↗ 0x00007fa0a82a5103: mov %r10,0xe8(%r11) ;*invokevirtual putLong ││ │││ ; - java.util.concurrent.ThreadLocalRandom::nextSeed@27 (line 241) 12.00% 8.14% ││ │││ 0x00007fa0a82a510a: inc %r8d ;*iinc ││ │││ ; - org.openjdk.LoopInc::directInc@46 (line 18) 0.03% 0.03% ││ │││ 0x00007fa0a82a510d: cmp $0x3e8,%r8d │╰ │││ 0x00007fa0a82a5114: jge 0x00007fa0a82a50c7 ;*aload_0 │ │││ ; - org.openjdk.LoopInc::directInc@11 (line 19) 0.80% 0.91% ↘ │││ 0x00007fa0a82a5116: mov 0xf0(%r11),%r10d ;*invokevirtual getInt │││ ; - java.util.concurrent.ThreadLocalRandom::current@9 (line 222) 4.28% 1.23% │││ 0x00007fa0a82a511d: test %r10d,%r10d ╭│││ 0x00007fa0a82a5120: je 0x00007fa0a82a517b ;*ifne ││││ ; - java.util.concurrent.ThreadLocalRandom::current@12 (line 222) 2.11% 0.01% ││││ 0x00007fa0a82a5122: movabs $0x9e3779b97f4a7c15,%r10 0.01% 0.07% ││││ 0x00007fa0a82a512c: add 0xe8(%r11),%r10 ;*ladd ││││ ; - java.util.concurrent.ThreadLocalRandom::nextSeed@24 (line 242) 7.73% 1.89% ││││ 0x00007fa0a82a5133: mov %r10,%r9 1.21% 1.84% ││││ 0x00007fa0a82a5136: shr $0x21,%r9 1.90% 0.03% ││││ 0x00007fa0a82a513a: xor %r10,%r9 2.02% 0.03% ││││ 0x00007fa0a82a513d: movabs $0xff51afd7ed558ccd,%rcx 0.94% 1.82% ││││ 0x00007fa0a82a5147: imul %rcx,%r9 ;*lmul ││││ ; - java.util.concurrent.ThreadLocalRandom::mix32@9 (line 182) 7.01% 2.40% ││││ 0x00007fa0a82a514b: mov %r9,%rcx ││││ 0x00007fa0a82a514e: shr $0x21,%rcx 1.89% 0.70% ││││ 0x00007fa0a82a5152: xor %r9,%rcx 3.11% 2.55% ││││ 0x00007fa0a82a5155: movabs $0xc4ceb9fe1a85ec53,%r9 0.99% 1.50% ││││ 0x00007fa0a82a515f: imul %r9,%rcx 7.66% 2.89% ││││ 0x00007fa0a82a5163: shr $0x20,%rcx 3.70% 1.97% ││││ 0x00007fa0a82a5167: mov %ecx,%r9d 0.11% ││││ 0x00007fa0a82a516a: and $0x1,%r9d ;*iand ││││ ; - java.util.concurrent.ThreadLocalRandom::nextInt@34 (line 356) 3.76% 11.13% ││││ 0x00007fa0a82a516e: cmp $0x1,%r9d │╰││ 0x00007fa0a82a5172: je 0x00007fa0a82a5101 10.48% 16.62% │ ││ 0x00007fa0a82a5174: test %r9d,%r9d │ ╰│ 0x00007fa0a82a5177: je 0x00007fa0a82a5103 ;*lookupswitch │ │ ; - org.openjdk.LoopInc::directInc@15 (line 19) │ ╰ 0x00007fa0a82a5179: jmp 0x00007fa0a82a5103 ;*aload_0 │ ; - org.openjdk.LoopInc::directInc@11 (line 19) ↘ 0x00007fa0a82a517b: mov $0xffffff5d,%esi 

    indirectInc

      0.01% 0.01% ↗ 0x00007f65588d8260: mov %edx,%r9d 0.01% │ 0x00007f65588d8263: nopw 0x0(%rax,%rax,1) 11.99% 11.38% │ 0x00007f65588d826c: data16 data16 xchg %ax,%ax ;*iconst_0 │ ; - org.openjdk.LoopInc::indirectInc@11 (line 34) │ 0x00007f65588d8270: mov 0xf0(%r8),%r10d ;*invokevirtual getInt │ ; - java.util.concurrent.ThreadLocalRandom::current@9 (line 222) │ 0x00007f65588d8277: test %r10d,%r10d │ 0x00007f65588d827a: je 0x00007f65588d8331 ;*ifne │ ; - java.util.concurrent.ThreadLocalRandom::current@12 (line 222) 0.01% │ 0x00007f65588d8280: movabs $0x9e3779b97f4a7c15,%r10 11.80% 11.49% │ 0x00007f65588d828a: add 0xe8(%r8),%r10 ;*ladd │ ; - java.util.concurrent.ThreadLocalRandom::nextSeed@24 (line 242) 0.01% 0.01% │ 0x00007f65588d8291: mov %r10,0xe8(%r8) ;*invokevirtual putLong │ ; - java.util.concurrent.ThreadLocalRandom::nextSeed@27 (line 241) │ 0x00007f65588d8298: mov %r9d,%edx 0.01% 0.01% │ 0x00007f65588d829b: inc %edx 11.12% 12.40% │ 0x00007f65588d829d: mov %r10,%rcx 0.01% │ 0x00007f65588d82a0: shr $0x21,%rcx 0.03% │ 0x00007f65588d82a4: xor %r10,%rcx 0.06% 0.03% │ 0x00007f65588d82a7: movabs $0xff51afd7ed558ccd,%r10 12.38% 13.94% │ 0x00007f65588d82b1: imul %r10,%rcx ;*lmul │ ; - java.util.concurrent.ThreadLocalRandom::mix32@9 (line 182) 0.03% 0.01% │ 0x00007f65588d82b5: mov %rcx,%r10 │ 0x00007f65588d82b8: shr $0x21,%r10 0.03% │ 0x00007f65588d82bc: xor %rcx,%r10 11.43% 12.62% │ 0x00007f65588d82bf: movabs $0xc4ceb9fe1a85ec53,%rcx 0.01% │ 0x00007f65588d82c9: imul %rcx,%r10 0.34% 0.30% │ 0x00007f65588d82cd: shr $0x20,%r10 0.85% 0.76% │ 0x00007f65588d82d1: mov %r10d,%r10d 11.81% 11.51% │ 0x00007f65588d82d4: and $0x1,%r10d 2.16% 1.78% │ 0x00007f65588d82d8: cmp $0x1,%r10d 3.45% 3.00% │ 0x00007f65588d82dc: cmovne %r9d,%edx <----- HERE IT IS 17.55% 15.86% │ 0x00007f65588d82e0: inc %r11d ;*iinc │ ; - org.openjdk.LoopInc::indirectInc@56 (line 33) │ 0x00007f65588d82e3: cmp $0x3e8,%r11d ╰ 0x00007f65588d82ea: jl 0x00007f65588d8260 ;*if_icmpge ; - org.openjdk.LoopInc::indirectInc@8 (line 33) 

    注意cmovne而不是jmp - 这就是我们有更多“可预测”分支的原因。 HotSpot对分支进行分析,并在分支轮廓分支非常平坦时发出条件移动。 换句话说,通过为条件移动的额外延迟付出一点,躲避非常可能的分支错误预测。 但是,在这种情况下,switch是特殊的:它有两个以上的选择(0,1和“nothing”)。 这就是为什么,我推测, result增量不会被折叠成cmov。 (一般来说,HotSpot可能已经存储了零, result “默认”,但它吹了它,哦,好吧)

  5. 为了确认这个假设,让我们做一个directCompleteInc案例,我们仍然使用switch ,但现在涵盖了所有情况:

     @Benchmark public int directCompleteInc() { int result = 0; for (int i = 0; i < 1000; i++) { switch (getValue()) { case 1: result++; break; default: break; } } return result; } 

    ...并测量它,这次没有任何选择,如OP做的:

     Benchmark Mode Cnt Score Error Units LoopInc.directCompleteInc thrpt 5 644.414 ± 0.371 ops/ms LoopInc.directInc thrpt 5 174.974 ± 0.103 ops/ms LoopInc.indirectInc thrpt 5 644.015 ± 0.533 ops/ms 

    那里。

  6. 确认directCompleteInc使用cmov-prof perfasm 确实如此。

  7. 喝了

  相关解决方案