不管怎么说,搜索都是非常重要的技术,不仅仅是操作系统集成了,很多应用软件都有搜索的功能,论坛有专门用于在论坛搜索的,互联网就有诸如像百度、谷歌之类的搜索引擎,总而言之,只要数据量稍微大一点的应用程序,都会提供搜索这个功能.
我们为什么需要Lucene?
任何的的查询功能都类似,都是对文本内容的搜索,说白了,就是找出含有指定字符串的的资源,只是查找的范围不同而已.
目前的主流搜索都是全文搜索,即根据程序扫描文章中的每一个词,为每一个词建立相应的索引,并且指明该词在文章中出现的次数和位置.当用户查询时,根据建立的索引进行查找,类似于通过字典的检索方式来查字的过程.我们做搜索,要保证几点,第一点就是要快,如果百度、谷歌搜个东西要10几秒,恐怕都没人用了吧?第二点,光快有什么?搜出来的东西完全不是自己想要的,大家通过搜索引擎找东西的时候,肯定注意到了一点,就是大家很少在2页以后还点下一页,这搜索的结果是被处理过的,把最有可能是你需要的东西放在了前面,这就是准确性,而且搜索只针对文本,不管你的关键字的语义.所以,总结一下,就是:
- 只处理文本
- 不处理语义
- 英文不区分大小写
- 结果列表有相关度排序
和数据库的搜索语句有何不同?
我们为什么需要专门对全文搜索进行描述呢?因为它可以做到select语句做不到的事情.如果我们需要在数据库里面搜索一个关键字,比如ant,就会有类似的语句:
SELECT?*?FROM?table_name?WHERE?content?like?'%ant%' |
会把planting之类的单词也搜索出来,显然就是没有意义的,没有人会喜欢这样结果.
另外数据库的搜索也并不能为结果做相关度得分,也就做不了相关度排名.搜索结果也更多的是无意的,或者是无用的.
最后一点,也很致命,数据库中的like,找得非常慢,一条记录一条记录地找,有时候简直难以忍受,而用全文检索的方式则是先在目录里面查,找到记录所在的位置,再直接定位过去.
所以select语句的弱点就是Lucene的优点,它可以解决上述的问题.
在程序中需要引入哪些包?
需要如何准备开发环境呢,哪些包是必须要有的,心里要大致有个数才行:
lucene-core-3.0.1.jar(最为核心的包,必不可少)
contrib/analyzers/common/lucene-analyzers-3.0.1.jar(用来将一段字符串以什么规则分解开来的分词器)
contrib/highlighter/lucene-highlighter-3.0.1.jar(将找到的结果高亮显示)
contrib/memory/lucene-memory-3.0.1.jar(高亮显示jar包所依赖的包)
Lucene的工作流程
我们每次使用搜索引擎的时候,右上角往往会显示用了多久,这个时间让人老是感觉不太准确,好像没那么快.这不是说搜索引擎的速度不够,有可能查询真的只用了那么点时间,但是返回的页面也是需要时间来生成的,还要在页面上加入广告之类的,这个时间可能就没有计算在内.总而言之,真正用来搜索的时间是非常短的,那么它为什么能够这么快呢?实际上,搜索的时候并不是在数据库里面进行搜索,而是在Lucene维护的索引库里面进行的,索引库包含两部分内容,一个称之为目录,这个目录里面就存有各种关键词对应数据的位置,搜索的时候上,Lucene就以某种指定的规则将你提供的关键字进行分词,然后在目录里面找,找得到的话,就返回一个编号,这个编号是唯一的,通过这个编号可以找到数据,但是数据也不是存在数据库中的.Lucene的索引库中更多的部分是用来存储数据的,这个数据是从互联网或者文件系统或者数据库中找到的,就像百度的快照一样,它只是一个缓存,给你看大致的内容,当你确定这就是你要找的内容,并且点进去的时候,才真正地去访问那个页面.搜索都是在索引库里面完成的.那么就出现了一个问题,有时候搜索到的东西,点进去发现不存在,或是已经删除了,或是已经更新了.那么就需要经常更新,或是时时更新.大致流程如下:
爬虫用来不间断的获取数据,通常刚刚发布到互联网上的数据不能立即在搜索引擎中找到,就是因为这个原因.可以指定让爬虫爬哪些类型的页面,来做垂直搜索.
索引库的CURD
一切前提都是建立在有索引的基础上,所以要先创建索引.对索引进行写的对象是IndexWriter.需要指定索引的位置,可以在文件系统中,也可以在内存中,除非保证计算机的内存每时每刻都是存在的,否则将丢失:
/** |
*FSDirectory:Directory是抽象类,FSDirectory是继承它的子类.FS前缀代表文件系统(File System),指定在当前路径下建立索引的文件夹名为indexDir. *Analyzer:分词器.以某种规则对关键字进行分词,分词的结果存进目录,用编号与数据对应,需要指定Lucene的版本号. *IndexWriter:能够建立索引库,要给定上面两个类.这里的第三个参数表示一个索引里面最多存多少个Field,超出部分将忽略. *MaxFieldLength.LIMITED:10000. |
*/ |
Directory?directory?=?FSDirectory.open(new?File("./indexDir/")); |
Analyzer?analyzer?=?new?StandardAnalyzer(Version.LUCENE_30); |
IndexWriter?indexWriter?=?new?IndexWriter(directory,analyzer,MaxFieldLength.LIMITED); |
??????????? |
这样就能创建索引库,但是不能把对象直接存进去,需要转成Lucene需求的对象:org.apache.lucene.document.Document,Document的每一个Field都代表对象需要存储在索引库中的属性,这样在搜索的时候,可以看到数据的摘要:
/** |
*用Document的add()方法增加一个属性进索引库,接收一个Field对象. *Field对象的第一个参数:用指定的字符串创建一个Field对象. *Field对象的第二个参数:存储的值. *Field对象的第三个参数:是否在索引库的数据里面存储Field的值. *Field对象的第四个参数:以何种方式对第二个参数的值进行操作(分词、不分词、不建立索引). |
*/ |
Document?doc?=?new?Document(); |
Article?article?=?(Article)?obj; |
doc.add(new?Field("id",article.getId().toString(),Store.YES,Index.ANALYZED)); |
把你的对象转为Document对象就可以被IndexWriter添加到索引库中了:
indexWriter.addDocument(Document); |
这样,一个完整的创建索引就完成了.
添加索引的目的就是为了有效、快捷的查询,与IndexWriter对应,Lucene为查询提供了相应的API,org.apache.lucene.search.IndexSearcher,需要给它指定索引库的目录:
Directory?directory?=?FSDirectory.open(new?File("./indexDir/")); |
IndexSearcher?indexSearcher?=?new?IndexSearcher(directory); |
Lucene支持多种查询方式,最常用的就是Query对象了:
/** |
*提供分词器 |
*QueryParser:用于解析查询字符串的处理器类 *第二个参数:在哪个Field里面查找 *Query.parse:需要解析的查询字符串 |
*/ |
Analyzer?analyzer?=?new?StandardAnalyzer(Version.LUCENE_30); |
QueryParser?queryParser?=?new?QueryParser(Version.LUCENE_30,"title",analyzer); |
Query?query?=?queryParser.parse("panpan"); |
提供分词器一定要注意:创建索引库时的分词器要和解析时用的分词器一样.不然规则不一样,处理的关键词也不一样.很的可能找不到结果.得到Query对象之后,就可以进行查询了.要用到IndexSearcher的search()方法,这个方法需要两个参数,第一个参数就是Query对象,第二个参数是需要指定返回前多少条结果.然后返回一个TopDocs对象,返回一个对象而不是一个集合也是很好理解的,因为如果我们指定了返回前100条结果,如果结果总数大于100,我们就无法知道总共有多少条记录,也就无法完成分页.所以返回一个对象,这个对象封装了记录的总数和符合搜索条件的List集合:
/** |
*得到TopDocs对象之后,可以获取它的成员变量totalHits和scoreDocs.这两个成员变量的访问权限是public的,所以可以直接访问 |
*/ |
TopDocs?topDocs?=?indexSearcher.search(query,?100); |
Integer?count?=?topDocs.totalHits; |
ScoreDoc[]?scoreDocs?=?topDocs.scoreDocs; |
然后通过循环的方式打印出来,以验证效果是否正确:
/** |
*从ScoreDoc对象里面可以获取两个东西,同样是public的访问权限: *score:相关度得分,跟在内容中出现的次数有关 *doc:从上面那个流程图中可以得知,索引库从应用程序那里接收的是Document对象,所以返回的也是Document对象. *DocumentUtils.docConvert():自己写的工具方法,因为很多地方都要用到双边的转换 |
*/ |
List<Article>?list?=?new?ArrayList(); |
for(int?i?=?0;i<scoreDocs.length;i++){ |
????ScoreDoc?scoreDoc?=?scoreDocs[i]; |
????//浮点类型的得分 |
????float?score?=?scoreDoc.score; |
????int?docID?=?scoreDoc.doc; |
????Document?document?=?indexSearcher.doc(docID); |
????list.add(DocumentUtils.docConvert(document,?Article.class)); |
} |
System.out.println("总共获取了"?+?count?+?"条记录"); |
for(Article?a:?list){ |
????System.out.print(a.getId()?+?"????????"); |
????System.out.print(a.getContent()?+?"????????"); |
????System.out.println(a.getTitle()); |
} |
把工具方法也放上来吧:
/** |
*有些东西还是写死了,其实完全可以通过反射来完成,当时没有花太多时间的结果 |
*/ |
public?static?<M,T>?T?docConvert(M?obj,Class<T>?clazz){ |
????try?{ |
????????T?t?=?clazz.newInstance(); |
????????if(t?instanceof?Document){ |
????????????Document?doc?=?(Document)?t; |
????????????Article?article?=?(Article)?obj; |
????????????doc.add(new?Field("id",article.getId().toString(),Store.YES,Index.ANALYZED)); |
????????????doc.add(new?Field("title",article.getTitle(),Store.YES,Index.ANALYZED)); |
????????????doc.add(new?Field("content",article.getContent(),Store.YES,Index.ANALYZED)); |
????????????return?(T)?doc; |
????????}else?if(t?instanceof?Article){ |
????????????Article?article?=?(Article)?t; |
????????????Document?doc?=?(Document)?obj; |
????????????article.setId(Integer.parseInt(doc.get("id"))); |
????????????article.setContent(doc.get("content")); |
????????????article.setTitle(doc.get("title")); |
????????????return?(T)?article; |
????????} |
????????return?null; |
????}?catch?(Exception?e)?{ |
????????throw?new?RuntimeException(e); |
????} |
} |
基本的创建和查询就完成了.有几点需要注意:
- IndexWriter和IndexSearcher使用完后,要记得调用它们的close()方法
- 版本号一定要选择当前使用的版本
- 如果在创建索引时选择Store.NO,将不会在索引库的数据中添加内容;选择Index.NO,将不会在索引库中增加目录
- 目录和分词器都要匹配,不然找不到结果.更好的做好是在一个工具类中声明为static,初始化一次就行了
接下来考虑删除索引,为什么不是先更新呢?因为删除也是更新的一部分.还是需要用到IndexWriter类,有两种方式可以删除,第一种就是使用Term类,第二种就是将满足搜索条件的删除:
/**? |
*Term类也是用来搜索的,构造函数的意思是:在哪个Field里面查哪个关键词 |
*然后调用IndexWriter的deleteDocument()方法删除包含指定Term的Document? |
*/? |
IndexWriter?indexWriter?=?null;? |
Term?term?=?new?Term("title","panpan");? |
indexWriter?=?new?IndexWriter(Configuration.directory,Configuration.analyzer,MaxFieldLength.LIMITED);? |
indexWriter.deleteDocuments(term);? |
? |
再来就是更新,为什么把更新放在最后?因为更新操作需要较高的代价,因为文档修改后,即使是很小的修改,就可能会造成文档中的很多关键词的位置都发生变化,这就需要频繁的读取和修改记录,这种代价是相当高的.因此,一般不进行真正的更新操作,而是使用"先删除,再创建"的策略代替更新操作:
/** |
*最后一句话,相当于: indexWriter.deleteDocuments(term); indexWriter.addDocument(doc); 先删除,再创建! |
*/ |
IndexWriter?indexWriter?=?null; |
Article?article?=?new?Article(); |
article.setContent("This?is?the?updated?content!"); |
article.setId(1); |
article.setTitle("panpan"); |
Term?term?=?new?Term("id",article.getId().toString()); |
indexWriter?=?new?IndexWriter(Configuration.directory,Configuration.analyzer,MaxFieldLength.LIMITED); |
indexWriter.updateDocument(term,?DocumentUtils.docConvert(article,?Document.class)); |
?
基本的CURD就到此结束了.但是有些问题没有解决,比如搜索时以上代码只能在一个Field里面进行搜索,如果我要在title和content里面同时进行搜索就不行,搜索两次?太无聊了.lucene当然有相应的解决办法,比如使用QueryParser的子类:MultiFieldQueryParser.从这个名字就猜到是专用来做多Field搜索的:
/** |
*接收一个String数组也是可以理解的. |
*/ |
String[]?fields?=?{"title","content"}; |
MultiFieldQueryParser?queryParser?=?new?MultiFieldQueryParser(Version.LUCENE_30,fields,Configuration.analyzer); |
Query?query?=?queryParser.parse("love"); |
如果稍微留心就可以注意到,索引库的文件不是一层不变的,cfs类型的文件在不停的有规律地增加,这个文件多了以后,会影响到搜索的效率,因为它要打开多个文件,所以我们又要想办法让它合并成一个文件:
indexWriter.addDocument(DocumentUtils.docConvert(article,?Document.class));? |
indexWriter.optimize();? |
这是手动优化的方法,IndexWriter在关闭时候会自动调用commit()方法,这个方法会把索引真正的写到硬盘上去,也就是说每一次对索引库进行操作,都会生成一个索引文件.手动优化毕竟不太方便,那是否有自动优化的操作呢?答案是肯定的:
indexWriter.addDocument(DocumentUtils.docConvert(article,?Document.class)); |
//手动优化?合并文件 |
//indexWriter.optimize(); |
//自动优化?合并文件 |
indexWriter.setMergeFactor(5); |
设置合并因子即可,这里又有两点需要注意:
- 默认合并因子为10,也就是说cfs文件达到10个,Lucene就会自动合并
- 设置合并因子的代码一定要在操作IndexWriter的时候进行,并且是每一次操作的时候都要进行,它需要不停的判断
接着下一个问题,更新索引库实际上就是更新硬盘上的目录,每次更新或者创建新的索引都对硬盘进行操作,大家肯定都知道效率不高,但是索引库一定是要放在硬盘上的,不能随着程序的结束而结束,那么就要找个既能存储在硬盘上,又能保证效率的方法,比如程序启动的时候从硬盘加载索引库,而后一切操作都是针对内存中的索引库进行操作,在程序结束的时候把内存中的索引库存储在硬盘上去.这样就能解决这个不是问题的问题:
public?void?updateRAMIndex(){ |
????//RAMDirectory是Directory的子类,将在内存区保留一段缓存 |
????RAMDirectory?ram?=?null; |
????IndexWriter?indexWriter?=?null; |
????try?{ |
????????//将指定目录中的索引加载到内存中来 |
????????ram?=?new?RAMDirectory(Configuration.directory); |
????????//第一个参数决定了这是一个操作内存索引库的IndexWriter |
????????indexWriter?=?new?IndexWriter(ram,Configuration.analyzer,MaxFieldLength.LIMITED); |
????????//添加新的数据 |
????????Article?article?=?new?Article(45,"panpan","love?you"); |
????????indexWriter.addDocument(DocumentUtils.docConvert(article,?Document.class)); |
????????/**一个索引库只能有一个IndexWriter,一一对应. |
?????????*?同时,同一时刻只能有一个IndexWriter,如果有两个,不能写同一个文件,不然就有问题? |
?????????*/ |
????????indexWriter.close(); |
??????? |
????????/**这个IndexWriter是针对文件系统的 |
?????????*?第三个参数是指:????如果指定为true,表示重新创建索引库,如果已存在,就删除后再创建; |
?????????*?????????????????指定为false,表示追加(默认值) |
?????????*?????????????????如果不存在,就抛异常. |
?????????*/ |
????????indexWriter?=?new?IndexWriter(Configuration.directory,Configuration.analyzer,true,MaxFieldLength.LIMITED); |
????????/** |
?????????*?将指定目录添加到文件系统中,并且不优化 |
?????????*?如果传入一个IndexReader,可以进行优化: |
???????????IndexReader?indexReader?=?IndexReader.open(ram); |
???????????indexWriter.addIndexes(indexReader); |
?????????*/ |
????????indexWriter.addIndexesNoOptimize(ram); |
????}?catch?(Exception?e)?{ |
????????throw?new?RuntimeException(e); |
????}finally{ |
????????try?{ |
????????????ram.close(); |
????????????indexWriter.close(); |
????????}?catch?(Exception?e)?{ |
????????????throw?new?RuntimeException(e); |
????????} |
????} |
} |