?? 这几天都会看一些hadoop的源代码,开始的时候总会没有任何头绪,不知道从哪开始,经过这几天的对hadoop运行流程的分析和了解,还有从别人那得到的一些启发,再加上看到其他人发表的博客,对hadoop源代码 有了一点点的认识,这篇博客写下一点对hadoop源代码的了解
1.启动hadoop
我们都知道启动hadoop的命令是bin/start-all.sh,通过查看start-all.sh脚本,可以发现运行该脚本之后,Hadoop会配置一系列的环境变量以及其他Hadoop运行所需要的参数,然后在本机运行JobTracker和NameNode。然后通过SSH登录到所有slave机器上,启动TaskTracker和DataNode。
2.启动namenode和JobTracker(这次只分析启动JobTracker)
org.apache.hadoop.mapred.JobTracker类实现了JobTracker启动的实现,我们可以看一下JobTracker这个类,
首先看一下startTracker这个方法
?
public static JobTracker startTracker(JobConf conf)
throws IOException, InterruptedException {
return startTracker(conf, DEFAULT_CLOCK);
}
static JobTracker startTracker(JobConf conf, Clock clock)
throws IOException, InterruptedException {
return startTracker(conf, clock, generateNewIdentifier());
}
static JobTracker startTracker(JobConf conf, Clock clock, String identifier)
throws IOException, InterruptedException {
JobTracker result = null;
while (true) {
try {
result = new JobTracker(conf, clock, identifier);
result.taskScheduler.setTaskTrackerManager(result);
break;
} catch (VersionMismatch e) {
throw e;
} catch (BindException e) {
throw e;
} catch (UnknownHostException e) {
throw e;
} catch (AccessControlException ace) {
// in case of jobtracker not having right access
// bail out
throw ace;
} catch (IOException e) {
LOG.warn("Error starting tracker: " +
StringUtils.stringifyException(e));
}
Thread.sleep(1000);
}
if (result != null) {
JobEndNotifier.startNotifier();
}
return result;
}
}
startTracker函数是一个静态方法,是它调用JobTracker的构造函数生成一个JobTracker类的实例,名为result,传入的参数JobConf,进行一系列的配置。然后,进行了一系列初始化活动,包括启动RPC server,启动内置的jetty服务器,检查是否需要重启JobTracker等。
再来看一下offerService方法
?
/**
* Run forever
*/
public void offerService() throws InterruptedException, IOException {
// Prepare for recovery. This is done irrespective of the status of restart
// flag.
while (true) {
try {
recoveryManager.updateRestartCount();
break;
} catch (IOException ioe) {
LOG.warn("Failed to initialize recovery manager. ", ioe);
// wait for some time
Thread.sleep(FS_ACCESS_RETRY_PERIOD);
LOG.warn("Retrying...");
}
}
taskScheduler.start();
recoveryManager.recover();
// refresh the node list as the recovery manager might have added
// disallowed trackers
refreshHosts();
startExpireTrackersThread();
expireLaunchingTaskThread.start();
if (completedJobStatusStore.isActive()) {
completedJobsStoreThread = new Thread(completedJobStatusStore,
"completedjobsStore-housekeeper");
completedJobsStoreThread.start();
}
// start the inter-tracker server once the jt is ready
this.interTrackerServer.start();
synchronized (this) {
state = State.RUNNING;
}
LOG.info("Starting RUNNING");
this.interTrackerServer.join();
LOG.info("Stopped interTrackerServer");
}
?
?
我们可以看到offerService方法其实及时启了taskScheduler.start(),但是我们接着看TaskScheduler类,我们看到调用的TaskScheduler.start()方法,实际上没有做任何事情,实际上taskScheduler.start()方法执行的是JobQueueTaskScheduler类的start方法。
?
?
public void start() throws IOException {
// do nothing
}
?
我们继续看JobQueueTaskScheduler类
?
public synchronized void start() throws IOException {
super.start();
taskTrackerManager.addJobInProgressListener(jobQueueJobInProgressListener);
eagerTaskInitializationListener.setTaskTrackerManager(taskTrackerManager);
eagerTaskInitializationListener.start();
taskTrackerManager.addJobInProgressListener(
eagerTaskInitializationListener);
}
JobQueueTaskScheduler类的start方法主要注册了两个非常重要的监听器:jobQueueJobInProgressListener和eagerTaskInitializationListener。前者是JobQueueJobInProgressListener类的一个实例,该类以先进先出的方式维持一个JobInProgress的队列,并且监听各个JobInProgress实例在生命周期中的变化;后者是EagerTaskInitializationListener类的一个实例,该类不断监听jobInitQueue,一旦发现有新的job被提交(即有新的JobInProgress实例被加入),则立即调用该实例的initTasks方法,对job进行初始化。
那个监听的类我们就不看了,我们看一下JobInProgress类,其中的主要方法initTasks()的主要代码
?
public synchronized void initTasks()
throws IOException, KillInterruptedException, UnknownHostException {
if (tasksInited.get() || isComplete()) {
return;
}
synchronized(jobInitKillStatus){
if(jobInitKillStatus.killed || jobInitKillStatus.initStarted) {
return;
}
jobInitKillStatus.initStarted = true;
}
LOG.info("Initializing " + jobId);
logSubmissionToJobHistory();
// log the job priority
setPriority(this.priority);
//
// generate security keys needed by Tasks
//
generateAndStoreTokens();
//
// read input splits and create a map per a split
//
TaskSplitMetaInfo[] taskSplitMetaInfo = createSplits(jobId);
numMapTasks = taskSplitMetaInfo.length;
checkTaskLimits();
// Sanity check the locations so we don't create/initialize unnecessary tasks
for (TaskSplitMetaInfo split : taskSplitMetaInfo) {
NetUtils.verifyHostnames(split.getLocations());
}
jobtracker.getInstrumentation().addWaitingMaps(getJobID(), numMapTasks);
jobtracker.getInstrumentation().addWaitingReduces(getJobID(), numReduceTasks);
createMapTasks(jobFile.toString(), taskSplitMetaInfo);
if (numMapTasks > 0) {
nonRunningMapCache = createCache(taskSplitMetaInfo,
maxLevel);
}
// set the launch time
this.launchTime = JobTracker.getClock().getTime();
createReduceTasks(jobFile.toString());
// Calculate the minimum number of maps to be complete before
// we should start scheduling reduces
completedMapsForReduceSlowstart =
(int)Math.ceil(
(conf.getFloat(MRJobConfig.COMPLETED_MAPS_FOR_REDUCE_SLOWSTART,
DEFAULT_COMPLETED_MAPS_PERCENT_FOR_REDUCE_SLOWSTART) *
numMapTasks));
initSetupCleanupTasks(jobFile.toString());
synchronized(jobInitKillStatus){
jobInitKillStatus.initDone = true;
if(jobInitKillStatus.killed) {
//setup not launched so directly terminate
throw new KillInterruptedException("Job " + jobId + " killed in init");
}
}
tasksInited.set(true);
JobInitedEvent jie = new JobInitedEvent(
profile.getJobID(), this.launchTime,
numMapTasks, numReduceTasks,
JobStatus.getJobRunState(JobStatus.PREP),
false);
jobHistory.logEvent(jie, jobId);
// Log the number of map and reduce tasks
LOG.info("Job " + jobId + " initialized successfully with " + numMapTasks
+ " map tasks and " + numReduceTasks + " reduce tasks.");
}
?
?在这个方法里面有两个重要的方法:
createMapTasks(jobFile.toString(), taskSplitMetaInfo);
createReduceTasks(jobFile.toString())
其实初始化Tasks的过程应该就是这部分最重要的一步
?
//map task的个数就是input split的个数
numMapTasks = splits.length;
//为每个map tasks生成一个TaskInProgress来处理一个input split
maps = newTaskInProgress[numMapTasks];
for(inti=0; i < numMapTasks; ++i) {
inputLength += splits[i].getDataLength();
maps[i] =new TaskInProgress(jobId, jobFile,
splits[i],
jobtracker, conf, this, i);
}
?
对于map task,将其放入nonRunningMapCache,是一个Map<Node,
List<TaskInProgress>>,也即对于map task来讲,其将会被分配到其input
split所在的Node上。在此,Node代表一个datanode或者机架或者数据中
心。nonRunningMapCache将在JobTracker向TaskTracker分配map task的
时候使用。
?
if(numMapTasks > 0) {
nonRunningMapCache = createCache(splits,maxLevel);
}
//创建reduce task
this.reduces = new TaskInProgress[numReduceTasks];
for (int i= 0; i < numReduceTasks; i++) {
reduces[i]= new TaskInProgress(jobId, jobFile,
numMapTasks, i,
jobtracker, conf, this);
/*reducetask放入nonRunningReduces,其将在JobTracker向TaskTracker
分配reduce task的时候使用。*/
nonRunningReduces.add(reduces[i]);
}
//创建两个cleanup task,一个用来清理map,一个用来清理reduce.
cleanup =new TaskInProgress[2];
cleanup[0]= new TaskInProgress(jobId, jobFile, splits[0],
jobtracker, conf, this, numMapTasks);
cleanup[0].setJobCleanupTask();
cleanup[1]= new TaskInProgress(jobId, jobFile, numMapTasks,
numReduceTasks, jobtracker, conf, this);
cleanup[1].setJobCleanupTask();
//创建两个初始化 task,一个初始化map,一个初始化reduce.
setup =new TaskInProgress[2];
setup[0] =new TaskInProgress(jobId, jobFile, splits[0],
jobtracker,conf, this, numMapTasks + 1 );
setup[0].setJobSetupTask();
setup[1] =new TaskInProgress(jobId, jobFile, numMapTasks,
numReduceTasks + 1, jobtracker, conf, this);
setup[1].setJobSetupTask();
tasksInited.set(true);//初始化完毕
}
?
?这一部分就结束了,我画一张简单的流程图
启动datanode和TaskTracker(同样我们这里只讲一下TaskTracker)
org.apache.hadoop.mapred.TaskTracker类实现了MapReduce模型中TaskTracker的功能。TaskTracker也是作为一个单独的JVM来运行的,其main函数就是TaskTracker的入口函数,当运行start-all.sh时,脚本就是通过SSH运行该函数来启动TaskTracker的。
我们来看一下TaskTracker类的main函数
?
public static void main(String argv[]) throws Exception {
StringUtils.startupShutdownMessage(TaskTracker.class, argv, LOG);
if (argv.length != 0) {
System.out.println("usage: TaskTracker");
System.exit(-1);
}
try {
JobConf conf=new JobConf();
// enable the server to track time spent waiting on locks
ReflectionUtils.setContentionTracing
(conf.getBoolean(TT_CONTENTION_TRACKING, false));
new TaskTracker(conf).run();
} catch (Throwable e) {
LOG.error("Can not start task tracker because "+
StringUtils.stringifyException(e));
System.exit(-1);
}
}
?
?
里面主要的代码就是new TaskTracker(conf).run(),传入配置文件conf,其中run函数主要调用了offerService函数
?
public void run() {
try {
startCleanupThreads();
boolean denied = false;
while (running && !shuttingDown && !denied) {
boolean staleState = false;
try {
// This while-loop attempts reconnects if we get network errors
while (running && !staleState && !shuttingDown && !denied) {
try {
State osState = offerService();
if (osState == State.STALE) {
staleState = true;
} else if (osState == State.DENIED) {
denied = true;
}
} catch (Exception ex) {
if (!shuttingDown) {
LOG.info("Lost connection to JobTracker [" +
jobTrackAddr + "]. Retrying...", ex);
try {
Thread.sleep(5000);
} catch (InterruptedException ie) {
}
}
}
}
} finally {
close();
}
if (shuttingDown) { return; }
LOG.warn("Reinitializing local state");
initialize();
}
if (denied) {
shutdown();
}
} catch (IOException iex) {
LOG.error("Got fatal exception while reinitializing TaskTracker: " +
StringUtils.stringifyException(iex));
return;
}
catch (InterruptedException i) {
LOG.error("Got interrupted while reinitializing TaskTracker: " +
i.getMessage());
return;
}
}
?
?
每隔一段时间就向JobTracker发送heartbeat
?
long waitTime = heartbeatInterval - (now - lastHeartbeat);
if (waitTime > 0) {
// sleeps for the wait time or
// until there are empty slots to schedule tasks
synchronized (finishedCount) {
if (finishedCount.get() == 0) {
finishedCount.wait(waitTime);
}
finishedCount.set(0);
}
}
?
发送Heartbeat到JobTracker,得到response
?
// Send the heartbeat and process the jobtracker's directives
HeartbeatResponse heartbeatResponse = transmitHeartBeat(now);
//从Response中得到此TaskTracker需要做的事情
TaskTrackerAction[] actions = heartbeatResponse.getActions();
if (actions != null){
for(TaskTrackerAction action: actions) {
if (action instanceof LaunchTaskAction) {
addToTaskQueue((LaunchTaskAction)action);
} else if (action instanceof CommitTaskAction) {
CommitTaskAction commitAction = (CommitTaskAction)action;
if (!commitResponses.contains(commitAction.getTaskID())) {
LOG.info("Received commit task action for " +
commitAction.getTaskID());
commitResponses.add(commitAction.getTaskID());
}
} else {
tasksToCleanup.put(action);
}
}
}
markUnresponsiveTasks();
killOverflowingTasks();
?
?
其中transmitHeartBeat方法的作用就是向JobTracker发送Heartbeat
?
//每隔一段时间,在heartbeat中要返回给JobTracker一些统计信息
booleansendCounters;
if (now> (previousUpdate + COUNTER_UPDATE_INTERVAL)) {
sendCounters = true;
previousUpdate = now;
}
else {
sendCounters = false;
}
?
?
报告给JobTracker,此TaskTracker的当前状态
?
if(status == null) {
synchronized (this) {
status = new TaskTrackerStatus(taskTrackerName, localHostname,
httpPort,
cloneAndResetRunningTaskStatuses(
sendCounters),
failures,
maxCurrentMapTasks,
maxCurrentReduceTasks);
}
}
?
当满足下面的条件的时候,此TaskTracker请求JobTracker为其分配一个新的Task来运行:
当前TaskTracker正在运行的map task的个数小于可以运行的map task的最大个数
当前TaskTracker正在运行的reduce task的个数小于可以运行的reduce task的最大个数
?
booleanaskForNewTask;
longlocalMinSpaceStart;
synchronized (this) {
askForNewTask = (status.countMapTasks() < maxCurrentMapTasks ||
status.countReduceTasks() <maxCurrentReduceTasks)
&& acceptNewTasks;
localMinSpaceStart = minSpaceStart;
}
//向JobTracker发送heartbeat,这是一个RPC调用
HeartbeatResponse heartbeatResponse = jobClient.heartbeat(status,
justStarted, askForNewTask,
heartbeatResponseId);
……
returnheartbeatResponse;
}
?
?这个过程还是很复杂的这涉及到RPC,以及很复杂的通信控制,我在这里比较简单的概括了一下其中过程,希望大家可以自己深入研究,最后还是贴一张我自己画的流程图
?
今天这分析了两步,我自己也要进一步的深入分析,明天继续分析后面的过程,敬请期待!
?