当前位置: 代码迷 >> VC/MFC >> HEVC码率控制算法研究与HM呼应代码分析(三)——算法及代码分析
  详细解决方案

HEVC码率控制算法研究与HM呼应代码分析(三)——算法及代码分析

热度:281   发布时间:2016-05-02 03:54:46.0
HEVC码率控制算法研究与HM相应代码分析(三)——算法及代码分析

在前两篇文章中,首先介绍了HEVC标准和编码流程,然后介绍了在HEVC中采用的全新的R-λ模型,本文将基于前面的内容和相应代码对码率控制算法进行详细的分析。

下面基于JCTVC-K0103提案详细介绍一下HEVC中基于R-λ模型的码率控制方法。同时基于HM-10对码率控制部分的代码做一个简要分析,相比于JM,HM中更多的使用了面向对象技术,结构更加清楚明了,码率控制相关代码的基本调用层次如下,纵向上即层层调用的关系,横向上是对几个比较重要的函数的内部调用情况列了出来。


跟以前的方法类似,码率控制方法还是分为两大步骤:比特分配以及调整编码参数来达到目标码率,在第二步中才会用到R-λ模型。

下面先看比特分配。分为三个级别,GOP层、图片层和基本编码单元层。
首先计算每幅图片的目标比特数,f为帧率,Rtar为目标码率

设已编码图片的数量为Ncoded,这些图片用掉的比特数为Rcoded,当前GOP中的图片数量为NGOP ,SW是平滑比特分配的滑动窗口的大小,用于使得比特消耗变化和编码图片的质量更加平缓,在这里设为40,则GOP级别的比特分配


我们希望能在SW帧之后达到目标码率,如果SW帧图片可以正好做到每一帧消耗TAvgPic 比特,则上式可以改写为


式子的第一部分代表目标码率,第二部分则代表buffer的状态
对应代码如下

mainTAppEncTop::encodeTEncTop::encodeTEncRateCtrl::initRCGOPTEncRCGOP::createTEncRCGOP:: xEstGOPTargetBits事先定义有 const Int g_RCSmoothWindowSize = 40;Int TEncRCGOP::xEstGOPTargetBits( TEncRCSeq* encRCSeq, Int GOPSize ){  Int realInfluencePicture = min( g_RCSmoothWindowSize, encRCSeq->getFramesLeft() );  Int averageTargetBitsPerPic = (Int)( encRCSeq->getTargetBits() / encRCSeq->getTotalFrames() );  Int currentTargetBitsPerPic = (Int)( ( encRCSeq->getBitsLeft() - averageTargetBitsPerPic * (encRCSeq->getFramesLeft() - realInfluencePicture) ) / realInfluencePicture );  Int targetBits = currentTargetBitsPerPic * GOPSize;  if ( targetBits < 200 )  {    targetBits = 200;   // at least allocate 200 bits for one GOP  }  return targetBits;}

然后是图片级别的比特分配
设当前GOP已经用掉的比特数为CodedGOP ,ω 是每幅图片的比特分配权重,则当前图片的目标比特率为

mainTAppEncTop::encodeTEncTop::encode(先initRCGOP再compressGOP)TEncGOP::compressGOPTEncRateCtrl::initRCPicTEncRCPic::createTEncRCPic::xEstPicTargetBitsInt TEncRCPic::xEstPicTargetBits( TEncRCSeq* encRCSeq, TEncRCGOP* encRCGOP ){  Int targetBits        = 0;  Int GOPbitsLeft       = encRCGOP->getBitsLeft();  Int i;  Int currPicPosition = encRCGOP->getNumPic()-encRCGOP->getPicLeft();  Int currPicRatio    = encRCSeq->getBitRatio( currPicPosition );  Int totalPicRatio   = 0;  for ( i=currPicPosition; i<encRCGOP->getNumPic(); i++ )  {    totalPicRatio += encRCSeq->getBitRatio( i );  }  targetBits  = Int( GOPbitsLeft * currPicRatio / totalPicRatio );  if ( targetBits < 100 )  {    targetBits = 100;   // at least allocate 100 bits for one picture  }  if ( m_encRCSeq->getFramesLeft() > 16 )  {    targetBits = Int( g_RCWeightPicRargetBitInBuffer * targetBits + g_RCWeightPicTargetBitInGOP * m_encRCGOP->getTargetBitInGOP( currPicPosition ) );  }  return targetBits;}同时有if ( targetBits < estHeaderBits + 100 )  {    targetBits = estHeaderBits + 100;   // at least allocate 100 bits for picture data  }

上式可以根据不同图片的权重分配剩余的比特,ω 的值如下

在实际的应用中,所有图片均使用相同的ω是一种选择(即Equal allocation),这样设置会导致每幅图片消耗的比特差别不大。图片之间分级分配比特是另一种不错的选择(Hierarchical allocation),因为图片之间分级的分配比特可以对编码性能带来不小的提升。K0103的码率控制算法支持均匀分配比特和分级分配比特。

MainTAppEncTop::encodeTAppEncTop::xCreateLibTEncTop::createTEncRateCtrl::initInt* bitsRatio;  bitsRatio = new Int[ GOPSize ];  for ( Int i=0; i<GOPSize; i++ )  {    bitsRatio[i] = 10;    if ( !GOPList[i].m_refPic )    {      bitsRatio[i] = 2;    }  }if ( keepHierBits )  {    Double bpp = (Double)( targetBitrate / (Double)( frameRate*picWidth*picHeight ) );    if ( GOPSize == 4 && isLowdelay )    {      if ( bpp > 0.2 )      {        bitsRatio[0] = 2;        bitsRatio[1] = 3;        bitsRatio[2] = 2;        bitsRatio[3] = 6;      }      else if( bpp > 0.1 )      {        bitsRatio[0] = 2;        bitsRatio[1] = 3;        bitsRatio[2] = 2;        bitsRatio[3] = 10;      }      else if ( bpp > 0.05 )      {        bitsRatio[0] = 2;        bitsRatio[1] = 3;        bitsRatio[2] = 2;        bitsRatio[3] = 12;      }      else      {        bitsRatio[0] = 2;        bitsRatio[1] = 3;        bitsRatio[2] = 2;        bitsRatio[3] = 14;      }    }    else if ( GOPSize == 8 && !isLowdelay )    {      if ( bpp > 0.2 )      {        bitsRatio[0] = 15;        bitsRatio[1] = 5;        bitsRatio[2] = 4;        bitsRatio[3] = 1;        bitsRatio[4] = 1;        bitsRatio[5] = 4;        bitsRatio[6] = 1;        bitsRatio[7] = 1;      }      else if ( bpp > 0.1 )      {        bitsRatio[0] = 20;        bitsRatio[1] = 6;        bitsRatio[2] = 4;        bitsRatio[3] = 1;        bitsRatio[4] = 1;        bitsRatio[5] = 4;        bitsRatio[6] = 1;        bitsRatio[7] = 1;      }      else if ( bpp > 0.05 )      {        bitsRatio[0] = 25;        bitsRatio[1] = 7;        bitsRatio[2] = 4;        bitsRatio[3] = 1;        bitsRatio[4] = 1;        bitsRatio[5] = 4;        bitsRatio[6] = 1;        bitsRatio[7] = 1;      }      else      {        bitsRatio[0] = 30;        bitsRatio[1] = 8;        bitsRatio[2] = 4;        bitsRatio[3] = 1;        bitsRatio[4] = 1;        bitsRatio[5] = 4;        bitsRatio[6] = 1;        bitsRatio[7] = 1;      }    }    else    {      printf( "\n hierarchical bit allocation is not support for the specified coding structure currently." );    }  }

对于帧内编码图像,当QP和λ未指定时,分配给帧内编码图像的比特数(TCurrPic)修正如下

需要注意的是,该修正值只在更新Rcoded 时使用(整个序列消耗的比特数),而不会用于更新CodedGOP (当前GOP消耗的比特数),这是因为帧内编码帧消耗的比特数往往很高,甚至高于给GOP分配的比特数,用未经修正的TCurrPic值更新CodedGOP

mainTAppEncTop::encodeTEncTop::encode(先initRCGOP再compressGOP)TEncGOP::compressGOPTEncRCSeq::getRefineBitsForIntraInt TEncRCSeq::getRefineBitsForIntra( Int orgBits ){  Double bpp = ( (Double)orgBits ) / m_picHeight / m_picHeight;  if ( bpp > 0.2 )  {    return orgBits * 5;  }  if ( bpp > 0.1 )  {    return orgBits * 7;  }  return orgBits * 10;}

LCU层的比特分配
在该提案中认为一个基本单元包含一个LCU,其目标比特数由下式决定

Bitheader 是所有头信息比特数的估计值,由同一层之前的已编码图片的实际头信息比特数估计得来。

mainTAppEncTop::encodeTEncTop::encode(先initRCGOP再compressGOP)TEncGOP::compressGOPTEncRateCtrl::initRCPicTEncRCPic::create(先xEstPicTargetBits再xEstPicHeaderBits)TEncRCPic:: xEstPicHeaderBitsInt TEncRCPic::xEstPicHeaderBits( list<TEncRCPic*>& listPreviousPictures, Int frameLevel ){  Int numPreviousPics   = 0;  Int totalPreviousBits = 0;  list<TEncRCPic*>::iterator it;  for ( it = listPreviousPictures.begin(); it != listPreviousPictures.end(); it++ )  {    if ( (*it)->getFrameLevel() == frameLevel )    {      totalPreviousBits += (*it)->getPicActualHeaderBits();      numPreviousPics++;    }  }  Int estHeaderBits = 0;  if ( numPreviousPics > 0 )  {    estHeaderBits = totalPreviousBits / numPreviousPics;  }  return estHeaderBits;}

ω 则是每个LCU的权重,根据根据之前编码的,在同一级别图片中处于同一位置的基本单元的预测误差(MAD)进行计算,如下

以上就是比特分配的过程。

mainTAppEncTop::encodeTEncTop::encode(先initRCGOP再compressGOP)TEncGOP::compressGOPTEncSlice::compressSliceTEncRCPic::getLCUTargetBppDouble TEncRCPic::getLCUTargetBpp(){  Int   LCUIdx    = getLCUCoded();  Double bpp      = -1.0;  Int avgBits     = 0;  Double totalMAD = -1.0;  Double MAD      = -1.0;  if ( m_lastPicture == NULL )  {    avgBits = Int( m_bitsLeft / m_LCULeft );  }  else  {    MAD = m_lastPicture->getLCU(LCUIdx).m_MAD;    totalMAD = m_lastPicture->getTotalMAD();    for ( Int i=0; i<LCUIdx; i++ )    {      totalMAD -= m_lastPicture->getLCU(i).m_MAD;    }    if ( totalMAD > 0.1 )    {      avgBits = Int( m_bitsLeft * MAD / totalMAD );    }    else    {      avgBits = Int( m_bitsLeft / m_LCULeft );    }  }#if L0033_RC_BUGFIX  if ( avgBits < 1 )  {    avgBits = 1;  }#else  if ( avgBits < 5 )  {    avgBits = 5;  }#endif  bpp = ( Double )avgBits/( Double )m_LCUs[ LCUIdx ].m_numberOfPixel;  m_LCUs[ LCUIdx ].m_targetBits = avgBits;  return bpp;}

然后是第二步,即如何达到分配的目标比特数
首先将前面的R-λ模型变为如下形式

使用上式依据一幅图片或者一个LCU的目标码率尺推导得到当前图片或者当前LCU编码所需要使用的λ。现在唯一的问题是,在不同编码序列的情况下,模型可能会拥有完全不相同的α和β值。此外,即使对于同一序列,处于不同级别的图片也可能拥有完全不相同的α和β值。例如,当GOP大小为4时,图片共分为三个级别,这三个级别的图片的α和β值可能是不同的。另外,不同的基本编码单元也可能拥有不同的α和β值,在此,我们假设在同一级别图片中对应位置的基本编码单元的α和β值相同。
需要注意的是α和β值的初始值设置并不是很严重的问题,因为在编码过程中,α和β值会根据序列逐渐更新,并最终适应序列特性。
设α和β值的初始值分别为3.2003 和-1.367。

MainTAppEncTop::encodeTAppEncTop::xCreateLibTEncTop::createTEncRateCtrl::initTEncRCSeq::initPicParaVoid TEncRCSeq::initPicPara( TRCParameter* picPara ){  assert( m_picPara != NULL );  if ( picPara == NULL )  {    for ( Int i=0; i<m_numberOfLevel; i++ )    {      m_picPara[i].m_alpha = 3.2003;      m_picPara[i].m_beta  = -1.367;    }  }  else  {    for ( Int i=0; i<m_numberOfLevel; i++ )    {      m_picPara[i] = picPara[i];    }  }}以及MainTAppEncTop::encodeTAppEncTop::xCreateLibTEncTop::createTEncRateCtrl::initTEncRCSeq::initLCUParaVoid TEncRCSeq::initLCUPara( TRCParameter** LCUPara ){  if ( m_LCUPara == NULL )  {    return;  }  if ( LCUPara == NULL )  {    for ( Int i=0; i<m_numberOfLevel; i++ )    {      for ( Int j=0; j<m_numberOfLCU; j++)      {        m_LCUPara[i][j].m_alpha = 3.2003;        m_LCUPara[i][j].m_beta  = -1.367;      }    }  }  else  {    for ( Int i=0; i<m_numberOfLevel; i++ )    {      for ( Int j=0; j<m_numberOfLCU; j++)      {        m_LCUPara[i][j] = LCUPara[i][j];      }    }  }}


确定λ之后,使用下式得到QP值

 Int QP = Int( 4.2005 * log( lambda ) + 13.7122 + 0.5 );


最后是参数更新步骤
在编码完一个LCU或者一幅图像之后,需要使用真正的bpp值(bppreal)和λ值(λreal)来更新α和β值。需要注意的是,在一幅图像中,每一个LCU都有他自己的λ值,而整幅图像的λ为所有LCU的λ的几何平均值

mainTAppEncTop::encodeTEncTop::encode(先initRCGOP再compressGOP)TEncGOP::compressGOPTEncRCPic::calAverageLambdaDouble TEncRCPic::calAverageLambda(){  Double totalLambdas = 0.0;  Int numTotalLCUs = 0;  Int i;  for ( i=0; i<m_numberOfLCU; i++ )  {    if ( m_LCUs[i].m_lambda > 0.01 )    {      totalLambdas += log( m_LCUs[i].m_lambda );      numTotalLCUs++;    }  }  Double avgLambda;   if( numTotalLCUs == 0 )  {    avgLambda = -1.0;  }  else  {    avgLambda = pow( 2.7183, totalLambdas / numTotalLCUs );  }  return avgLambda;}

至于QP平均值的计算,就是用常见的算术平均值
mainTAppEncTop::encodeTEncTop::encode(先initRCGOP再compressGOP)TEncGOP::compressGOPTEncRCPic:: calAverageQPDouble TEncRCPic::calAverageQP(){  Int totalQPs = 0;  Int numTotalLCUs = 0;  Int i;  for ( i=0; i<m_numberOfLCU; i++ )  {    if ( m_LCUs[i].m_QP > 0 )    {      totalQPs += m_LCUs[i].m_QP;      numTotalLCUs++;    }  }  Double avgQP = 0.0;  if ( numTotalLCUs == 0 )  {    avgQP = g_RCInvalidQPValue;  }  else  {    avgQP = ((Double)totalQPs) / ((Double)numTotalLCUs);  }  return avgQP;}

更新过程按下式进行


Double estLambda = alpha * pow( bpp, beta );


mainTAppEncTop::encodeTEncTop::encode(先initRCGOP再compressGOP)TEncGOP::compressGOPTEncRCPic::updateAfterLCUVoid TEncRCPic::updateAfterLCU( Int LCUIdx, Int bits, Int QP, Double lambda, Bool updateLCUParameter ){  m_LCUs[LCUIdx].m_actualBits = bits;  m_LCUs[LCUIdx].m_QP         = QP;  m_LCUs[LCUIdx].m_lambda     = lambda;  m_LCULeft--;  m_bitsLeft   -= bits;  m_pixelsLeft -= m_LCUs[LCUIdx].m_numberOfPixel;  if ( !updateLCUParameter )  {    return;  }  if ( !m_encRCSeq->getUseLCUSeparateModel() )  {    return;  }  Double alpha = m_encRCSeq->getLCUPara( m_frameLevel, LCUIdx ).m_alpha;  Double beta  = m_encRCSeq->getLCUPara( m_frameLevel, LCUIdx ).m_beta;  Int LCUActualBits   = m_LCUs[LCUIdx].m_actualBits;  Int LCUTotalPixels  = m_LCUs[LCUIdx].m_numberOfPixel;  Double bpp         = ( Double )LCUActualBits/( Double )LCUTotalPixels;  Double calLambda   = alpha * pow( bpp, beta );  Double inputLambda = m_LCUs[LCUIdx].m_lambda;  if( inputLambda < 0.01 || calLambda < 0.01 || bpp < 0.0001 )  {    alpha *= ( 1.0 - m_encRCSeq->getAlphaUpdate() / 2.0 );    beta  *= ( 1.0 - m_encRCSeq->getBetaUpdate() / 2.0 );    alpha = Clip3( 0.05, 20.0, alpha );    beta  = Clip3( -3.0, -0.1, beta  );    TRCParameter rcPara;    rcPara.m_alpha = alpha;    rcPara.m_beta  = beta;    m_encRCSeq->setLCUPara( m_frameLevel, LCUIdx, rcPara );    return;  }  calLambda = Clip3( inputLambda / 10.0, inputLambda * 10.0, calLambda );  alpha += m_encRCSeq->getAlphaUpdate() * ( log( inputLambda ) - log( calLambda ) ) * alpha;  double lnbpp = log( bpp );  lnbpp = Clip3( -5.0, 1.0, lnbpp );  beta  += m_encRCSeq->getBetaUpdate() * ( log( inputLambda ) - log( calLambda ) ) * lnbpp;  alpha = Clip3( 0.05, 20.0, alpha );  beta  = Clip3( -3.0, -0.1, beta  );  TRCParameter rcPara;  rcPara.m_alpha = alpha;  rcPara.m_beta  = beta;  m_encRCSeq->setLCUPara( m_frameLevel, LCUIdx, rcPara );}以及mainTAppEncTop::encodeTEncTop::encode(先initRCGOP再compressGOP)TEncGOP::compressGOPTEncRCPic:: updateAfterPictureVoid TEncRCPic::updateAfterPicture( Int actualHeaderBits, Int actualTotalBits, Double averageQP, Double averageLambda, Double effectivePercentage ){  m_picActualHeaderBits = actualHeaderBits;  m_picActualBits       = actualTotalBits;  if ( averageQP > 0.0 )  {    m_picQP             = Int( averageQP + 0.5 );  }  else  {    m_picQP             = g_RCInvalidQPValue;  }  m_picLambda           = averageLambda;  for ( Int i=0; i<m_numberOfLCU; i++ )  {    m_totalMAD += m_LCUs[i].m_MAD;  }  Double alpha = m_encRCSeq->getPicPara( m_frameLevel ).m_alpha;  Double beta  = m_encRCSeq->getPicPara( m_frameLevel ).m_beta;  // update parameters  Double picActualBits = ( Double )m_picActualBits;  Double picActualBpp  = picActualBits/(Double)m_numberOfPixel;  Double calLambda     = alpha * pow( picActualBpp, beta );  Double inputLambda   = m_picLambda;  if ( inputLambda < 0.01 || calLambda < 0.01 || picActualBpp < 0.0001 || effectivePercentage < 0.05 )  {    alpha *= ( 1.0 - m_encRCSeq->getAlphaUpdate() / 2.0 );    beta  *= ( 1.0 - m_encRCSeq->getBetaUpdate() / 2.0 );    alpha = Clip3( 0.05, 20.0, alpha );    beta  = Clip3( -3.0, -0.1, beta  );    TRCParameter rcPara;    rcPara.m_alpha = alpha;    rcPara.m_beta  = beta;    m_encRCSeq->setPicPara( m_frameLevel, rcPara );    return;  }  calLambda = Clip3( inputLambda / 10.0, inputLambda * 10.0, calLambda );  alpha += m_encRCSeq->getAlphaUpdate() * ( log( inputLambda ) - log( calLambda ) ) * alpha;  double lnbpp = log( picActualBpp );  lnbpp = Clip3( -5.0, 1.0, lnbpp );  beta  += m_encRCSeq->getBetaUpdate() * ( log( inputLambda ) - log( calLambda ) ) * lnbpp;  alpha = Clip3( 0.05, 20.0, alpha );  beta  = Clip3( -3.0, -0.1, beta  );  TRCParameter rcPara;  rcPara.m_alpha = alpha;  rcPara.m_beta  = beta;  m_encRCSeq->setPicPara( m_frameLevel, rcPara );}

δα 和δβ 设为0.1 和 0.05

 MainTAppEncTop::encodeTAppEncTop::xCreateLibTEncTop::createTEncRateCtrl::initTEncRCSeq::create  m_numberOfPixel   = m_picWidth * m_picHeight;  m_targetBits      = (Int64)m_totalFrames * (Int64)m_targetRate / (Int64)m_frameRate;  m_seqTargetBpp = (Double)m_targetRate / (Double)m_frameRate / (Double)m_numberOfPixel;  if ( m_seqTargetBpp < 0.03 )  {    m_alphaUpdate = 0.01;    m_betaUpdate  = 0.005;  }  else if ( m_seqTargetBpp < 0.08 )  {    m_alphaUpdate = 0.05;    m_betaUpdate  = 0.025;  }  else  {    m_alphaUpdate = 0.1;    m_betaUpdate  = 0.05;  }

此外,在某些时候(如LCU使用了skip模式,或者一幅图片中有大量的skip模式的LCU)可能出现bpp过小的情况,此时用下式进行更新


当然,α和β也是有范围限定的。α 的值限定在 [0.05, 20] 而 β 的值限定在 [?3.0, ?0.1].

  alpha = Clip3( 0.05, 20.0, alpha );  beta  = Clip3( -3.0, -0.1, beta  );

当然,λ和QP值将会被限定在一个范围内
在图像层,有

mainTAppEncTop::encodeTEncTop::encode(先initRCGOP再compressGOP)TEncGOP::compressGOPDouble TEncRCPic::estimatePicLambda( list<TEncRCPic*>& listPreviousPictures ){  Double alpha         = m_encRCSeq->getPicPara( m_frameLevel ).m_alpha;  Double beta          = m_encRCSeq->getPicPara( m_frameLevel ).m_beta;  Double bpp       = (Double)m_targetBits/(Double)m_numberOfPixel;  Double estLambda = alpha * pow( bpp, beta );  Double lastLevelLambda = -1.0;  Double lastPicLambda   = -1.0;  Double lastValidLambda = -1.0;  list<TEncRCPic*>::iterator it;  for ( it = listPreviousPictures.begin(); it != listPreviousPictures.end(); it++ )  {    if ( (*it)->getFrameLevel() == m_frameLevel )    {      lastLevelLambda = (*it)->getPicActualLambda();    }    lastPicLambda     = (*it)->getPicActualLambda();    if ( lastPicLambda > 0.0 )    {      lastValidLambda = lastPicLambda;    }  }  if ( lastLevelLambda > 0.0 )  {    lastLevelLambda = Clip3( 0.1, 10000.0, lastLevelLambda );    estLambda = Clip3( lastLevelLambda * pow( 2.0, -3.0/3.0 ), lastLevelLambda * pow( 2.0, 3.0/3.0 ), estLambda );  }  if ( lastPicLambda > 0.0 )  {    lastPicLambda = Clip3( 0.1, 2000.0, lastPicLambda );    estLambda = Clip3( lastPicLambda * pow( 2.0, -10.0/3.0 ), lastPicLambda * pow( 2.0, 10.0/3.0 ), estLambda );  }  else if ( lastValidLambda > 0.0 )  {    lastValidLambda = Clip3( 0.1, 2000.0, lastValidLambda );    estLambda = Clip3( lastValidLambda * pow(2.0, -10.0/3.0), lastValidLambda * pow(2.0, 10.0/3.0), estLambda );  }  else  {    estLambda = Clip3( 0.1, 10000.0, estLambda );  }  if ( estLambda < 0.1 )  {    estLambda = 0.1;  }  m_estPicLambda = estLambda;  return estLambda;}Int TEncRCPic::estimatePicQP( Double lambda, list<TEncRCPic*>& listPreviousPictures ){  Int QP = Int( 4.2005 * log( lambda ) + 13.7122 + 0.5 );   Int lastLevelQP = g_RCInvalidQPValue;  Int lastPicQP   = g_RCInvalidQPValue;  Int lastValidQP = g_RCInvalidQPValue;  list<TEncRCPic*>::iterator it;  for ( it = listPreviousPictures.begin(); it != listPreviousPictures.end(); it++ )  {    if ( (*it)->getFrameLevel() == m_frameLevel )    {      lastLevelQP = (*it)->getPicActualQP();    }    lastPicQP = (*it)->getPicActualQP();    if ( lastPicQP > g_RCInvalidQPValue )    {      lastValidQP = lastPicQP;    }  }  if ( lastLevelQP > g_RCInvalidQPValue )  {    QP = Clip3( lastLevelQP - 3, lastLevelQP + 3, QP );  }  if( lastPicQP > g_RCInvalidQPValue )  {    QP = Clip3( lastPicQP - 10, lastPicQP + 10, QP );  }  else if( lastValidQP > g_RCInvalidQPValue )  {    QP = Clip3( lastValidQP - 10, lastValidQP + 10, QP );  }  return QP;}


在LCU层有


Double TEncRCPic::getLCUEstLambda( Double bpp ){  Int   LCUIdx = getLCUCoded();  Double alpha;  Double beta;  if ( m_encRCSeq->getUseLCUSeparateModel() )  {    alpha = m_encRCSeq->getLCUPara( m_frameLevel, LCUIdx ).m_alpha;    beta  = m_encRCSeq->getLCUPara( m_frameLevel, LCUIdx ).m_beta;  }  else  {    alpha = m_encRCSeq->getPicPara( m_frameLevel ).m_alpha;    beta  = m_encRCSeq->getPicPara( m_frameLevel ).m_beta;  }  Double estLambda = alpha * pow( bpp, beta );  //for Lambda clip, picture level clip  Double clipPicLambda = m_estPicLambda;  //for Lambda clip, LCU level clip  Double clipNeighbourLambda = -1.0;  for ( int i=LCUIdx - 1; i>=0; i-- )  {    if ( m_LCUs[i].m_lambda > 0 )    {      clipNeighbourLambda = m_LCUs[i].m_lambda;      break;    }  }  if ( clipNeighbourLambda > 0.0 )  {    estLambda = Clip3( clipNeighbourLambda * pow( 2.0, -1.0/3.0 ), clipNeighbourLambda * pow( 2.0, 1.0/3.0 ), estLambda );  }    if ( clipPicLambda > 0.0 )  {    estLambda = Clip3( clipPicLambda * pow( 2.0, -2.0/3.0 ), clipPicLambda * pow( 2.0, 2.0/3.0 ), estLambda );  }  else  {    estLambda = Clip3( 10.0, 1000.0, estLambda );  }  if ( estLambda < 0.1 )  {    estLambda = 0.1;  }  return estLambda;}Int TEncRCPic::getLCUEstQP( Double lambda, Int clipPicQP ){  Int LCUIdx = getLCUCoded();  Int estQP = Int( 4.2005 * log( lambda ) + 13.7122 + 0.5 );  //for Lambda clip, LCU level clip  Int clipNeighbourQP = g_RCInvalidQPValue;#if L0033_RC_BUGFIX  for ( int i=LCUIdx - 1; i>=0; i-- )#else  for ( int i=LCUIdx; i>=0; i-- )#endif  {    if ( (getLCU(i)).m_QP > g_RCInvalidQPValue )    {      clipNeighbourQP = getLCU(i).m_QP;      break;    }  }  if ( clipNeighbourQP > g_RCInvalidQPValue )  {    estQP = Clip3( clipNeighbourQP - 1, clipNeighbourQP + 1, estQP );  }  estQP = Clip3( clipPicQP - 2, clipPicQP + 2, estQP );  return estQP;}

以上就是本系列文章的所有内容,本系列文章完整版PDF下载地址在这里。

版权声明:本文为博主原创文章,未经博主允许不得转载。