当前位置: 代码迷 >> SQL >> Spark修炼之道(进阶篇)——Spark入门到精通:第10三节 Spark Streaming—— Spark SQL、DataFrame与Spark Streaming
  详细解决方案

Spark修炼之道(进阶篇)——Spark入门到精通:第10三节 Spark Streaming—— Spark SQL、DataFrame与Spark Streaming

热度:312   发布时间:2016-05-05 09:47:34.0
Spark修炼之道(进阶篇)——Spark入门到精通:第十三节 Spark Streaming—— Spark SQL、DataFrame与Spark Streaming

主要内容

  1. Spark SQL、DataFrame与Spark Streaming

1. Spark SQL、DataFrame与Spark Streaming

源码直接参照:https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/streaming/SqlNetworkWordCount.scala

import org.apache.spark.SparkConfimport org.apache.spark.SparkContextimport org.apache.spark.rdd.RDDimport org.apache.spark.streaming.{Time, Seconds, StreamingContext}import org.apache.spark.util.IntParamimport org.apache.spark.sql.SQLContextimport org.apache.spark.storage.StorageLevelobject SqlNetworkWordCount {  def main(args: Array[String]) {    if (args.length < 2) {      System.err.println("Usage: NetworkWordCount <hostname> <port>")      System.exit(1)    }    StreamingExamples.setStreamingLogLevels()    // Create the context with a 2 second batch size    val sparkConf = new SparkConf().setAppName("SqlNetworkWordCount").setMaster("local[4]")    val ssc = new StreamingContext(sparkConf, Seconds(2))    // Create a socket stream on target ip:port and count the    // words in input stream of \n delimited text (eg. generated by 'nc')    // Note that no duplication in storage level only for running locally.    // Replication necessary in distributed scenario for fault tolerance.    //Socke作为数据源    val lines = ssc.socketTextStream(args(0), args(1).toInt, StorageLevel.MEMORY_AND_DISK_SER)    //words DStream    val words = lines.flatMap(_.split(" "))    // Convert RDDs of the words DStream to DataFrame and run SQL query    //调用foreachRDD方法,遍历DStream中的RDD    words.foreachRDD((rdd: RDD[String], time: Time) => {      // Get the singleton instance of SQLContext      val sqlContext = SQLContextSingleton.getInstance(rdd.sparkContext)      import sqlContext.implicits._      // Convert RDD[String] to RDD[case class] to DataFrame      val wordsDataFrame = rdd.map(w => Record(w)).toDF()      // Register as table      wordsDataFrame.registerTempTable("words")      // Do word count on table using SQL and print it      val wordCountsDataFrame =        sqlContext.sql("select word, count(*) as total from words group by word")      println(s"========= $time =========")      wordCountsDataFrame.show()    })    ssc.start()    ssc.awaitTermination()  }}/** Case class for converting RDD to DataFrame */case class Record(word: String)/** Lazily instantiated singleton instance of SQLContext */object SQLContextSingleton {  @transient  private var instance: SQLContext = _  def getInstance(sparkContext: SparkContext): SQLContext = {    if (instance == null) {      instance = new SQLContext(sparkContext)    }    instance  }}

运行程序后,再运行下列命令

[email protected]:~# nc -lk 9999Spark is a fast and general cluster computing system for Big DataSpark is a fast and general cluster computing system for Big DataSpark is a fast and general cluster computing system for Big DataSpark is a fast and general cluster computing system for Big DataSpark is a fast and general cluster computing system for Big DataSpark is a fast and general cluster computing system for Big DataSpark is a fast and general cluster computing system for Big Data

处理结果:

========= 1448783840000 ms =========+---------+-----+|     word|total|+---------+-----+|    Spark|   12||   system|   12||  general|   12||     fast|   12||      and|   12||computing|   12||        a|   12||       is|   12||      for|   12||      Big|   12||  cluster|   12||     Data|   12|+---------+-----+========= 1448783842000 ms =========+----+-----+|word|total|+----+-----++----+-----+========= 1448783844000 ms =========+----+-----+|word|total|+----+-----++----+-----+
1楼u010786678昨天 19:15
感谢楼主的分享,学习了!!
  相关解决方案