当前位置: 代码迷 >> python >> MNIST 神经网络:准确率很低
  详细解决方案

MNIST 神经网络:准确率很低

热度:69   发布时间:2023-06-16 14:02:00.0

我正在使用 MNIST 数据集来学习张量流和神经网络。 下面是我在python中的代码。

import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("data/",one_hot=True) 

features = 28*28
classes = 10
batch_size = 100
m_train = mnist.train.num_examples
m_test = mnist.test.num_examples

print(" The neural network will be trained on ",m_train, " examples")

H_L_1_nodes = 500
H_L_2_nodes = 500
H_L_3_nodes = 500

x = tf.placeholder('float',[None,features])
y = tf.placeholder('float',[None,classes])

def neural_net(data):
    hidden_layer_1 = {'weights' : tf.Variable(tf.random_normal([features, H_L_1_nodes]) ),
                      'biases'  : tf.Variable(tf.random_normal([H_L_1_nodes]) )}

    hidden_layer_2 = {'weights' : tf.Variable(tf.random_normal([H_L_1_nodes, H_L_2_nodes]) ),
                      'biases'  : tf.Variable(tf.random_normal([H_L_2_nodes]))}

    hidden_layer_3 = {'weights' : tf.Variable(tf.random_normal([H_L_2_nodes, H_L_3_nodes]) ),
                      'biases'  : tf.Variable(tf.random_normal([H_L_3_nodes]))}

    output_layer   = {'weights' : tf.Variable(tf.random_normal([H_L_3_nodes, classes]) ),
                      'biases'  : tf.Variable(tf.random_normal([classes]) )}

    l1 = tf.add( tf.matmul( data, hidden_layer_1['weights'] ), hidden_layer_1['biases'])
    l1 = tf.nn.relu(l1)

    l2 = tf.add( tf.matmul( l1, hidden_layer_2['weights'] ), hidden_layer_2['biases'])
    l2 = tf.nn.relu(l2)

    l3 = tf.add( tf.matmul( l2, hidden_layer_3['weights'] ), hidden_layer_3['biases'])
    l3 = tf.nn.relu(l3)

    output = tf.add(tf.matmul( l3, output_layer['weights']), output_layer['biases'])
    output = tf.nn.relu(output)

    return output

def train_neural_network(x):
    prediction = neural_net(x)
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(prediction, y))
    optimizer = tf.train.AdamOptimizer(0.0001).minimize(cost)

    epochs = 5
    with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        for epoch in range(epochs):
            epoch_loss = 0 
            for _ in range(int(m_train/batch_size)):
                _x, _y = mnist.train.next_batch(batch_size)
                _, c = session.run( [optimizer,cost], feed_dict={x : _x, y : _y} )
                epoch_loss += c
            print(" Loss in ",epoch," iteration is ", epoch_loss)
        correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
        accuracy = tf.reduce_mean(tf.cast(correct,'float'))

        print("-------------------------------------------------------------------------")
        print(session.run(tf.cast(correct[:10],'float'), feed_dict= { x:mnist.test.images, y: mnist.test.labels } ))
        print("-------------------------------------------------------------------------")

        print(" The neural network will be tested on ",m_test, " examples")
        print(" Accuracy = ", accuracy.eval(feed_dict= { x:mnist.test.images, y: mnist.test.labels } )*100,"%")

print("Initializing training...")

train_neural_network(x)

print("Success!")

我得到了 9% 到 13% 的准确率,但不超过这个。 我想我已经正确地实现了代码,但无法弄清楚出了什么问题。 我发现的一件事是准确性是因为模型正确预测了 0。

我在计算网络输出时犯了错误,

错误的:

output = tf.add(tf.matmul( l3, output_layer['weights']), output_layer['biases'])
output = tf.nn.relu(output)

正确的:

output = tf.add(tf.matmul( l3, output_layer['weights']), output_layer['biases'])

我再次对输出进行了标准化,这弄乱了所有网络。 发布此答案,因为它将来可能对某人有所帮助。 谢谢!

PS:从借来的代码

编辑:

我发现使用可以进一步提高准确性,甚至可以通过使用进一步提高准确性。 可能有人会发现这很有用。

  相关解决方案