问题描述
我有一个这样的数据帧,我想每 60 分钟分组一次,并在 06:30 开始分组。
data
index
2017-02-14 06:29:57 11198648
2017-02-14 06:30:01 11198650
2017-02-14 06:37:22 11198706
2017-02-14 23:11:13 11207728
2017-02-14 23:21:43 11207774
2017-02-14 23:22:36 11207776
我在用:
df.groupby(pd.TimeGrouper(freq='60Min'))
我得到这个分组:
data
index
2017-02-14 06:00:00 x1
2017-02-14 07:00:00 x2
2017-02-14 08:00:00 x3
2017-02-14 09:00:00 x4
2017-02-14 10:00:00 x5
但我正在寻找这个结果:
data
index
2017-02-14 06:30:00 x1
2017-02-14 07:30:00 x2
2017-02-14 08:30:00 x3
2017-02-14 09:30:00 x4
2017-02-14 10:30:00 x5
我如何告诉函数在 6:30 以一小时为间隔开始分组?
如果.groupby(pd.TimeGrouper(freq='60Min'))不能完成,最好的方法是什么?
提前致以敬意和感谢
1楼
将base=30
与 label='right'
参数结合使用。
指定label='right'
使时间段从 6:30(较高侧)而不是 5:30 开始分组。
此外, base
设置为 0 ,因此需要将这些偏移 30 以考虑日期的前向传播。
假设,您要聚合每个子组的第一个元素,然后:
df.groupby(pd.Grouper(freq='60Min', base=30, label='right')).first()
# same thing using resample - df.resample('60Min', base=30, label='right').first()
产量:
data
index
2017-02-14 06:30:00 11198648.0
2017-02-14 07:30:00 11198650.0
2017-02-14 08:30:00 NaN
2017-02-14 09:30:00 NaN
2017-02-14 10:30:00 NaN
2017-02-14 11:30:00 NaN
2017-02-14 12:30:00 NaN
2017-02-14 13:30:00 NaN
2017-02-14 14:30:00 NaN
2017-02-14 15:30:00 NaN
2017-02-14 16:30:00 NaN
2017-02-14 17:30:00 NaN
2017-02-14 18:30:00 NaN
2017-02-14 19:30:00 NaN
2017-02-14 20:30:00 NaN
2017-02-14 21:30:00 NaN
2017-02-14 22:30:00 NaN
2017-02-14 23:30:00 11207728.0
2楼
使用这是一种重新采样时间序列的专用方法,这样我们就不需要DataFrame.GroupBy
和pd.Grouper
:
df.resample('60min', base=30, label='right').first()
输出
data
index
2017-02-14 06:30:00 11198648.0
2017-02-14 07:30:00 11198650.0
2017-02-14 08:30:00 NaN
2017-02-14 09:30:00 NaN
2017-02-14 10:30:00 NaN
2017-02-14 11:30:00 NaN
2017-02-14 12:30:00 NaN
2017-02-14 13:30:00 NaN
2017-02-14 14:30:00 NaN
2017-02-14 15:30:00 NaN
2017-02-14 16:30:00 NaN
2017-02-14 17:30:00 NaN
2017-02-14 18:30:00 NaN
2017-02-14 19:30:00 NaN
2017-02-14 20:30:00 NaN
2017-02-14 21:30:00 NaN
2017-02-14 22:30:00 NaN
2017-02-14 23:30:00 11207728.0
注意:当您的数据框中有多列时,您必须指定要聚合的列:
df.resample('60min', base=30, label='right')['data'].first()