当前位置: 代码迷 >> 综合 >> 821 DP lc.509(快速幂算法)lc.1137
  详细解决方案

821 DP lc.509(快速幂算法)lc.1137

热度:84   发布时间:2023-11-22 10:45:29.0

lc.509 斐波那契

  • DP 滚动数组
class Solution {
    
public:int fib(int n) {
    int f[31];f[0]=0;f[1]=1;for(int i=2;i<=n;i++){
    f[i]=f[i-1]+f[i-2];}return f[n];}
};
  • 矩阵快速幂 快速幂算法O(logn)
    在这里插入图片描述
class Solution {
    
public:int fib(int n) {
    if (n < 2) {
    return n;}vector<vector<int>> q{
    {
    1, 1}, {
    1, 0}};vector<vector<int>> res = matrix_pow(q, n - 1);return res[0][0];}                  //返回res[0][0]==Fn//由于f0=0,f1=1,res*[1;0]等于res,所以没必要再乘[1;0]vector<vector<int>> matrix_pow(vector<vector<int>>& a, int n) {
    vector<vector<int>> ret{
    {
    1, 0}, {
    0, 1}};while (n > 0) {
    if (n & 1) {
    ret = matrix_multiply(ret, a);  //矩阵与矩阵[1,0;0,1]相乘等于其本身}n >>= 1;a = matrix_multiply(a, a);}return ret;}                  //快速幂实现a^n 函数matrix_powvector<vector<int>> matrix_multiply(vector<vector<int>>& a, vector<vector<int>>& b) {
    vector<vector<int>> c{
    {
    0, 0}, {
    0, 0}};for (int i = 0; i < 2; i++) {
    for (int j = 0; j < 2; j++) {
    c[i][j] = a[i][0] * b[0][j] + a[i][1] * b[1][j];}}return c;}             //实现两个矩阵a,b相乘 函数matrix_multiply
};

我只觉得妙不堪言

  • 数学方法,通项公式
    在这里插入图片描述
class Solution {
    
public:int fib(int n) {
    double sqrt5 = sqrt(5);double fibN = pow((1 + sqrt5) / 2, n) - pow((1 - sqrt5) / 2, n);return round(fibN / sqrt5);}
};

lc.1137 泰波那契

Tn=Tn-1+Tn-2+Tn-3
其中,T1=0,T2=1,T3=1

  • DP
class Solution {
    
public:int tribonacci(int n) {
    if (n == 0){
    return 0;}if (n <= 2) {
    return 1;}int p = 0, q = 0, r = 1, s = 1;for (int i = 3; i <= n; ++i) {
    p = q;q = r;r = s;s = p + q + r;}return s;}
};
  • 快速幂
class Solution {
    
public:int tribonacci(int n) {
    if (n == 0) {
    return 0;}if (n <= 2) {
    return 1;}vector<vector<long>> q = {
    {
    1, 1, 1}, {
    1, 0, 0}, {
    0, 1, 0}};vector<vector<long>> res = pow(q, n);return res[0][2];}vector<vector<long>> pow(vector<vector<long>>& a, long n) {
    vector<vector<long>> ret = {
    {
    1, 0, 0}, {
    0, 1, 0}, {
    0, 0, 1}};while (n > 0) {
    if ((n & 1) == 1) {
    ret = multiply(ret, a);}n >>= 1;a = multiply(a, a);}return ret;}vector<vector<long>> multiply(vector<vector<long>>& a, vector<vector<long>>& b) {
    vector<vector<long>> c(3, vector<long>(3));for (int i = 0; i < 3; i++) {
    for (int j = 0; j < 3; j++) {
    c[i][j] = a[i][0] * b[0][j] + a[i][1] * b[1][j] + a[i][2] * b[2][j];}}return c;}
};

和 lc.509 差不多,依然是构造了multiply和pow两个函数来使用快速幂,二维变三维。
注意到可以用函数的构造,也同样可以使用字符重载。