Ladies and gentlemen, please sit up straight.
Don't tilt your head. I'm serious.
For n given strings S1,S2,?,Sn, labelled from 1 to n, you should find the largest i (1≤i≤n) such that there exists an integer j (1≤j<i) and Sj is not a substring of Si.
A substring of a string Si is another string that occurs in Si. For example, ``ruiz" is a substring of ``ruizhang", and ``rzhang" is not a substring of ``ruizhang".
Don't tilt your head. I'm serious.
For n given strings S1,S2,?,Sn, labelled from 1 to n, you should find the largest i (1≤i≤n) such that there exists an integer j (1≤j<i) and Sj is not a substring of Si.
A substring of a string Si is another string that occurs in Si. For example, ``ruiz" is a substring of ``ruizhang", and ``rzhang" is not a substring of ``ruizhang".
For each test case, the first line is the positive integer n (1≤n≤500) and in the following n lines list are the strings S1,S2,?,Sn.
All strings are given in lower-case letters and strings are no longer than 2000letters.
4 5 ab abc zabc abcd zabcd 4 you lovinyou aboutlovinyou allaboutlovinyou 5 de def abcd abcde abcdef 3 a ba ccc
Case #1: 4 Case #2: -1 Case #3: 4 Case #4: 3
题解:
题意:
让你从一堆有编号的串中找出最后面的一个i,使得在[1,i-1]中可以找到一个串s[j]不是s[i]的子串
思路:
直接搞看上去都是要炸的,所以要做一些优化,比如如果s[j-1]是s[j]的子串,那么如果s[j-1]不是s[i]的子串,那么s[j]也不是,反之如果s[j]是s[i]的子串,那么s[j-1]也一定是s[i]的子串,这样想预处理扫一遍数组,将前后有这种包含关系的标记一下就好了,然后从后面往前暴力扫
代码:
#include<iostream>
#include<cstring>
#include<stdio.h>
#include<math.h>
#include<string>
#include<stdio.h>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<deque>
#include<algorithm>
#define ll long long
#define INF 1008611111
#define M (t[k].l+t[k].r)/2
#define lson k*2
#define rson k*2+1
using namespace std;
char s[505][2005];
int vis[505];
int main()
{int i,j,k,test,q,n,d;scanf("%d",&test);for(q=1;q<=test;q++){scanf("%d",&n);for(i=1;i<=n;i++){scanf("%s",s[i]);vis[i]=0;}printf("Case #%d: ",q);d=-1;for(i=2;i<=n;i++){if(strstr(s[i],s[i-1])!=NULL)vis[i-1]=1;}for(i=n;i>=1;i--){for(j=1;j<i;j++){if(vis[j])continue;if(strstr(s[i],s[j])==NULL){d=i;goto loop;}}}loop:;printf("%d\n",d);}return 0;
}