当前位置: 代码迷 >> 综合 >> HDU 1051 Wooden Sticks 【贪心】
  详细解决方案

HDU 1051 Wooden Sticks 【贪心】

热度:33   发布时间:2023-11-11 11:16:26.0
题目传送门: 点击打开链接

Wooden Sticks

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 21597    Accepted Submission(s): 8695


Problem Description
There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:

(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l<=l' and w<=w'. Otherwise, it will need 1 minute for setup.

You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are (4,9), (5,2), (2,1), (3,5), and (1,4), then the minimum setup time should be 2 minutes since there is a sequence of pairs (1,4), (3,5), (4,9), (2,1), (5,2).

Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1<=n<=5000, that represents the number of wooden sticks in the test case, and the second line contains n 2 positive integers l1, w1, l2, w2, ..., ln, wn, each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.

Output
The output should contain the minimum setup time in minutes, one per line.

Sample Input

  
3 5 4 9 5 2 2 1 3 5 1 4 3 2 2 1 1 2 2 3 1 3 2 2 3 1

Sample Output

  
2 1 3

Source
Asia 2001, Taejon (South Korea)

题目大意:
有若干组木棍:木棍的长度为I 重为W   现在用机器加工这些木头: 规则如下:

1;加工第一组木头会花去1分钟
2:设加工的下一组木头的长度为 I'  重量为W‘   如果   I=<I' 且 W=<W'  ,则加工这根木头不需要花费时间。

问,所花费的最少时间是多少?


我们可以先把这些木棍进行排序,然后再从顶向下遍历。每次找到最长的增长序列。最后得到的增长序列的个数即为所求的答案。

举个例子: 
4 9 5 2 2 1 3 5 1 4 
排序过后为:
1,4
2,1
3,5
4,9
5,2

然后从上向下扫 ,可以找到两个递增序列。分别是

第一组:1,4  3,5  4,9
第二组:2,1 5,2

这组数据的结果是:2
          
            


#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define MM(a) memset(a,0,sizeof(a));struct sticks
{int len,we;bool vis;///vis 用来记录访问情况
}temp[10005];bool cmp(sticks a,sticks b)///先以长度为标准排序。再以重量为标准排序。
{if(a.len==b.len){return a.we<b.we;}else{return a.len<b.len;}
}
int main()
{int t;cin>>t;while(t--){MM(temp);int n;scanf("%d",&n);for(int i=0;i<n;i++){scanf("%d %d",&temp[i].len,&temp[i].we);}sort(temp,temp+n,cmp);int flag=0;int j=0;while(j<n)///从上向下遍历。找到最长的递增序列的{flag++;///flag为最长增长序列的个数int len2=0,we2=0;for(int i=0;i<n;i++){if(temp[i].vis==false){if(temp[i].len>=len2&&temp[i].we>=we2)///满足题意{
//                         printf ("%d %d\n", temp[i].len,temp[i].we);j++;temp[i].vis=true;///标记为以访问len2=temp[i].len;we2 =temp[i].we;}}}}printf("%d\n",flag);}return 0;
}