当前位置: 代码迷 >> 综合 >> ???Frequent Subsets Problem
  详细解决方案

???Frequent Subsets Problem

热度:88   发布时间:2023-11-03 00:53:28.0

The frequent subset problem is defined as follows. Suppose UU={1, 2,\ldots,N} is the universe, and S_{1}S?1??S_{2}S?2??,\ldots,S_{M}S?M??are MM sets over UU. Given a positive constant \alphaα0<\alpha \leq 10<α1, a subset BB (B \neq 0B0) is α-frequent if it is contained in at least \alpha MαM sets of S_{1}S?1??S_{2}S?2??,\ldots,S_{M}S?M??, i.e. \left | \left \{ i:B\subseteq S_{i} \right \} \right | \geq \alpha M{ i:B?S?i??}αM. The frequent subset problem is to find all the subsets that are α-frequent. For example, let U=\{1, 2,3,4,5\}U={ 1,2,3,4,5}M=3M=3\alpha =0.5α=0.5, and S_{1}=\{1, 5\}S?1??={ 1,5}S_{2}=\{1,2,5\}S?2??={ 1,2,5}S_{3}=\{1,3,4\}S?3??={ 1,3,4}. Then there are 33 α-frequent subsets of UU, which are \{1\}{ 1},\{5\}{ 5} and \{1,5\}{ 1,5}.

Input Format

The first line contains two numbers NN and \alphaα, where NN is a positive integers, and \alphaα is a floating-point number between 0 and 1. Each of the subsequent lines contains a set which consists of a sequence of positive integers separated by blanks, i.e., line i + 1i+1 contains S_{i}S?i??1 \le i \le M1iM . Your program should be able to handle NN up to 2020 and MM up to 5050.

Output Format

The number of \alphaα-frequent subsets.

样例输入

15 0.4
1 8 14 4 13 2
3 7 11 6
10 8 4 2
9 3 12 7 15 2
8 3 2 4 5

样例输出

11

题目来源

2017 ACM-ICPC 亚洲区(南宁赛区)网络赛

  相关解决方案