当前位置: 代码迷 >> 综合 >> Python openpose(摄像头实现)
  详细解决方案

Python openpose(摄像头实现)

热度:61   发布时间:2023-11-01 00:14:45.0

环境要求:基本的Pytorch环境及基本的库

模型文件:https://codechina.csdn.net/mirrors/quanhua92/human-pose-estimation-opencv/-/blob/master/graph_opt.pb

代码:

# To use Inference Engine backend, specify location of plugins:
# export LD_LIBRARY_PATH=/opt/intel/deeplearning_deploymenttoolkit/deployment_tools/external/mklml_lnx/lib:$LD_LIBRARY_PATH
import cv2 as cv
import numpy as np
import argparseparser = argparse.ArgumentParser()
parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera')
parser.add_argument('--thr', default=0.2, type=float, help='Threshold value for pose parts heat map')
parser.add_argument('--width', default=368, type=int, help='Resize input to specific width.')
parser.add_argument('--height', default=368, type=int, help='Resize input to specific height.')args = parser.parse_args()BODY_PARTS = { "Nose": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4,"LShoulder": 5, "LElbow": 6, "LWrist": 7, "RHip": 8, "RKnee": 9,"RAnkle": 10, "LHip": 11, "LKnee": 12, "LAnkle": 13, "REye": 14,"LEye": 15, "REar": 16, "LEar": 17, "Background": 18 }POSE_PAIRS = [ ["Neck", "RShoulder"], ["Neck", "LShoulder"], ["RShoulder", "RElbow"],["RElbow", "RWrist"], ["LShoulder", "LElbow"], ["LElbow", "LWrist"],["Neck", "RHip"], ["RHip", "RKnee"], ["RKnee", "RAnkle"], ["Neck", "LHip"],["LHip", "LKnee"], ["LKnee", "LAnkle"], ["Neck", "Nose"], ["Nose", "REye"],["REye", "REar"], ["Nose", "LEye"], ["LEye", "LEar"] ]inWidth = args.width
inHeight = args.heightnet = cv.dnn.readNetFromTensorflow("graph_opt.pb")cap = cv.VideoCapture(args.input if args.input else 0)while cv.waitKey(1) < 0:hasFrame, frame = cap.read()if not hasFrame:cv.waitKey()breakframeWidth = frame.shape[1]frameHeight = frame.shape[0]net.setInput(cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False))out = net.forward()out = out[:, :19, :, :]  # MobileNet output [1, 57, -1, -1], we only need the first 19 elementsassert(len(BODY_PARTS) == out.shape[1])points = []for i in range(len(BODY_PARTS)):# Slice heatmap of corresponging body's part.heatMap = out[0, i, :, :]# Originally, we try to find all the local maximums. To simplify a sample# we just find a global one. However only a single pose at the same time# could be detected this way._, conf, _, point = cv.minMaxLoc(heatMap)x = (frameWidth * point[0]) / out.shape[3]y = (frameHeight * point[1]) / out.shape[2]# Add a point if it's confidence is higher than threshold.points.append((int(x), int(y)) if conf > args.thr else None)for pair in POSE_PAIRS:partFrom = pair[0]partTo = pair[1]assert(partFrom in BODY_PARTS)assert(partTo in BODY_PARTS)idFrom = BODY_PARTS[partFrom]idTo = BODY_PARTS[partTo]if points[idFrom] and points[idTo]:cv.line(frame, points[idFrom], points[idTo], (0, 255, 0), 3)cv.ellipse(frame, points[idFrom], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)cv.ellipse(frame, points[idTo], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)t, _ = net.getPerfProfile()freq = cv.getTickFrequency() / 1000cv.putText(frame, '%.2fms' % (t / freq), (10, 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))cv.imshow('OpenPose using OpenCV', frame)