当前位置: 代码迷 >> 综合 >> HDOJ 1098 ”Ignatius's puzzle“
  详细解决方案

HDOJ 1098 ”Ignatius's puzzle“

热度:32   发布时间:2023-10-31 09:21:03.0

原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1098

Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x)if
no exists that a,then print "no".

 

Input

The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.

 

Output

The output contains a string "no",if you can't find a,or you should output a line contains the a.More details in the Sample Output.

 

Sample Input

11 100 9999

 

Sample Output

22 no 43

注:65|f(x)是f(x)能被65整除。

此题属于数论里面的费马小定理:

是数论中的一个重要定理,其内容为:

假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p)。即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。

a^(p-1)%p=1

(其中%为取模操作,且a<p,p为质数)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>int main()
{int k;while(~scanf("%d", &k)){int i;for(i=1;i<=65;i++){if((18+k*i)%65==0){printf("%d\n",i);break;}}if(i>65)printf("no\n");}return 0;
}