Linux是一个多任务操作系统,肯定会存在多个任务共同操作同一段内存或者设备的情况,多个任务甚至中断都能访问的资源叫做共享资源,就和共享单车一样。在驱动开发中要注意对共享资源的保护,也就是要处理对共享资源的并发访问。
多个任务同时访问同一片内存区域,这些任务可能会相互覆盖这段内存中的数据,造成内存数据混乱。现在的 Linux 系统并发产生的原因很复杂,总结一下有下面几个主要原因:
①、多线程并发访问, Linux 是多任务(线程)的系统,所以多线程访问是最基本的原因。
②、抢占式并发访问,从 2.6 版本内核开始, Linux 内核支持抢占,也就是说调度程序可以在任意时刻抢占正在运行的线程,从而运行其他的线程。
③、中断程序并发访问,这个无需多说,学过 STM32 的同学应该知道,硬件中断的权利可是很大的。
④、 SMP(多核)核间并发访问,现在 ARM 架构的多核 SOC 很常见,多核 CPU 存在核间并发访问
解决办法:
1、原子操作 --> 一般用于变量或者位操作的临界区保护
2、自旋锁 -->不会睡眠的锁,可用于中断,一般用于短时期的轻量级加锁
3、信号量 -->可以使线程休眠,不能用于中断,可以提高处理器使用效率
4、互斥体 -->
信号量用在同一线程内,比如操作设备时候读或者写或者打开操作的时候,都要加一个信号量保护,这些操作都在同一线程内顺序执行;completion机制则应用于不同线程之间的同步。
相比于自旋锁,信号量可以使线程进入休眠状态,比如 A 与 B、 C 合租了一套房子,这个房子只有一个厕所,一次只能一个人使用。某一天早上 A 去上厕所了,过了一会 B 也想用厕所,因为 A 在厕所里面,所以 B 只能等到 A 用来了才能进去。 B 要么就一直在厕所门口等着,等 A 出来,这个时候就相当于自旋锁。 B 也可以告诉 A,让 A 出来以后通知他一下,然后 B 继续回房间睡觉,这个时候相当于信号量。可以看出,使用信号量会提高处理器的使用效率,毕竟不用一直傻乎乎的在那里“自旋”等待。但是,信号量的开销要比自旋锁大,因为信号量使线程进入休眠状态以后会切换线程,切换线程就会有开销。
在 FreeRTOS 和 UCOS 中也有互斥体,将信号量的值设置为 1 就可以使用信号量进行互斥访问了,虽然可以通过信号量实现互斥,但是 Linux 提供了一个比信号量更专业的机制来进行互斥,它就是互斥体—mutex。互斥访问表示一次只有一个线程可以访问共享资源,不能递归申请互斥体。在我们编写 Linux 驱动的时候遇到需要互斥访问的地方建议使用 mutex。
**
原子操作(atomic_t)
**
175 typedef struct {
176 int counter;
177 } atomic_t;atomic_t a; //定义 aatomic_t b = ATOMIC_INIT(0); //定义原子变量 b 并赋初值为 0API:ATOMIC_INIT(int i) 定义原子变量的时候对其初始化。
int atomic_read(atomic_t *v) 读取 v 的值,并且返回。
void atomic_set(atomic_t *v, int i) 向 v 写入 i 值。
void atomic_add(int i, atomic_t *v) 给 v 加上 i 值。
void atomic_sub(int i, atomic_t *v) 从 v 减去 i 值。
void atomic_inc(atomic_t *v) 给 v 加 1,也就是自增。
void atomic_dec(atomic_t *v) 从 v 减 1,也就是自减
int atomic_dec_return(atomic_t *v) 从 v 减 1,并且返回 v 的值。
int atomic_inc_return(atomic_t *v) 给 v 加 1,并且返回 v 的值。
int atomic_sub_and_test(int i, atomic_t *v) 从 v 减 i,如果结果为 0 就返回真,否则返回假
int atomic_dec_and_test(atomic_t *v) 从 v 减 1,如果结果为 0 就返回真,否则返回假
int atomic_inc_and_test(atomic_t *v) 给 v 加 1,如果结果为 0 就返回真,否则返回假
int atomic_add_negative(int i, atomic_t *v) 给 v 加 i,如果结果为负就返回真,否则返回假void set_bit(int nr, void *p) 将 p 地址的第 nr 位置 1。
void clear_bit(int nr,void *p) 将 p 地址的第 nr 位清零。
void change_bit(int nr, void *p) 将 p 地址的第 nr 位进行翻转。
int test_bit(int nr, void *p) 获取 p 地址的第 nr 位的值。
int test_and_set_bit(int nr, void *p) 将 p 地址的第 nr 位置 1,并且返回 nr 位原来的值。
int test_and_clear_bit(int nr, void *p) 将 p 地址的第 nr 位清零,并且返回 nr 位原来的值。
int test_and_change_bit(int nr, void *p) 将 p 地址的第 nr 位翻转,并且返回 nr 位原来的值。
典型使用方法:
示例代码 47.2.2.2 原子变量和 API 函数使用
atomic_t v = ATOMIC_INIT(0); /* 定义并初始化原子变零 v=0 */
atomic_set(&v, 10); /* 设置 v=10 */
atomic_read(&v); /* 读取 v 的值,肯定是 10 */
atomic_inc(&v); /* v 的值加 1, v=11 */
**
自旋锁(spinlock_t)
**
内核当发生访问资源冲突的时候,可以有两种锁的原则选择:
一个是原地等待
一个是挂起当前进程,调度其他进程执行(睡眠)
Spinlock 是内核中提供的一种比较常见的锁机制,自旋锁是“原地等待”的方式解决资源冲突的,即,一个线程获取了一个自旋锁后,另外一个线程期望获取该自旋锁,获取不到,只能够原地“打转”(忙等待)。从这里我们可以看到自旋锁的一个缺点:那就等待自旋锁的线程会一直处于自旋状态,这样会浪费处理器时间,降低系统性能,所以自旋锁的持有时间不能太长。所以自旋锁适用于短时期的轻量级加锁,如果遇到需要长时间持有锁的场景那就需要换其他的方法了
注意事项:被自旋锁保护的临界区一定不能调用任何能够引起睡眠和阻塞的
API 函数,否则的话会可能会导致死锁现象的发生。自旋锁会自动禁止抢占,也就说当线程 A得到锁以后会暂时禁止内核抢占。
自旋锁的使用:
在linux kernel的实现中,经常会遇到这样的场景:共享数据被中断上下文和进程上下文访问,该如何保护呢?如果只有进程上下文的访问,那么可以考虑使用semaphore或者mutex的锁机制,但是现在中断上下文也参和进来,那些可以导致睡眠的lock就不能使用了,这时候,可以考虑使用spin lock。
这里为什么把中断上下文标红加粗呢?因为在中断上下文,是不允许睡眠的(原因详见文章《Linux 中断之中断处理浅析》中的第四章),所以,这里需要的是一个不会导致睡眠的锁——spinlock。
换言之,中断上下文要用锁,首选 spinlock。
使用自旋锁,有两种方式定义一个锁:
动态的:
spinlock_t lock;
spin_lock_init (&lock);
静态的:
DEFINE_SPINLOCK(lock);
spin_lock 的时候,禁止内核抢占
如果涉及到中断上下文的访问,spin lock需要和禁止本 CPU 上的中断联合使用(spin_lock_irqsave / spin_unlock_irqstore)
spin_lock_init(&ql_spidev->dev_lock); //初始化自旋锁lock
spin_lock_irqsave(&ql_spidev->dev_lock, flags); //保存本地中断状态、关闭本地中断、获取自旋锁
spin_unlock_irqrestore(&ql_spidev->dev_lock, flags); //释放锁、恢复本地中断到之前的状态等工作
**
spinlock_t lock; //定义自旋锁DEFINE_SPINLOCK(spinlock_t lock) 定义并初始化一个自选变量。
int spin_lock_init(spinlock_t *lock) 初始化自旋锁。
void spin_lock(spinlock_t *lock) 获取指定的自旋锁,也叫做加锁。
void spin_unlock(spinlock_t *lock) 释放指定的自旋锁。
int spin_trylock(spinlock_t *lock) 尝试获取指定的自旋锁,如果没有获取到就返回 0
int spin_is_locked(spinlock_t *lock)
检查指定的自旋锁是否被获取,如果没有被获取就返回非 0,否则返回 0void spin_lock_irq(spinlock_t *lock) 禁止本地中断,并获取自旋锁。
void spin_unlock_irq(spinlock_t *lock) 激活本地中断,并释放自旋锁。
void spin_lock_irqsave(spinlock_t *lock, unsigned long flags)
保存中断状态,禁止本地中断,并获取自旋锁。
void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags)
将中断状态恢复到以前的状态,并且激活本地中断,释放自旋锁
使用 spin_lock_irq/spin_unlock_irq 的时候需要用户能够确定加锁之前的中断状态,但实际上内核很庞大,运行也是“千变万化”,我们是很难确定某个时刻的中断状态,因此不推荐使用spin_lock_irq/spin_unlock_irq。建议使用 spin_lock_irqsave/ spin_unlock_irqrestore,因为这一组函数会保存中断状态,在释放锁的时候会恢复中断状态。一般在线程中使用 spin_lock_irqsave/
spin_unlock_irqrestore,在中断中使用 spin_lock/spin_unlock,示例代码如下所示:
典型使用方法:
示例代码 47.3.2.1 自旋锁使用示例
1 DEFINE_SPINLOCK(lock) /* 定义并初始化一个锁 */
2
3 /* 线程 A */
4 void functionA (){
5 unsigned long flags; /* 中断状态 */
6 spin_lock_irqsave(&lock, flags) /* 获取锁 */
7 /* 临界区 */
8 spin_unlock_irqrestore(&lock, flags) /* 释放锁 */
9 }
10
11 /* 中断服务函数 */
12 void irq() {
13 spin_lock(&lock) /* 获取锁 */
14 /* 临界区 */
15 spin_unlock(&lock) /* 释放锁 */
16 }
**
信号量(semaphore)
**
总结一下信号量的特点:
①、因为信号量可以使等待资源线程进入休眠状态,因此适用于那些占用资源比较久的场合。
②、因此信号量不能用于中断中,因为信号量会引起休眠,中断不能休眠。
③、如果共享资源的持有时间比较短,那就不适合使用信号量了,因为频繁的休眠、切换线程引起的开销要远大于信号量带来的那点优势。
信号量有一个信号量值,相当于一个房子有 10 把钥匙,这 10 把钥匙就相当于信号量值为10。因此,可以通过信号量来控制访问共享资源的访问数量,如果要想进房间,那就要先获取一把钥匙,信号量值减 1,直到 10 把钥匙都被拿走,信号量值为 0,这个时候就不允许任何人进入房间了,因为没钥匙了。
struct semaphore {
raw_spinlock_t lock;
unsigned int count;
struct list_head wait_list;
};DEFINE_SEAMPHORE(name) 定义一个信号量,并且设置信号量的值为 1。
void sema_init(struct semaphore *sem, int val) 初始化信号量 sem,设置信号量值为 val。
void down(struct semaphore *sem)
获取信号量,因为会导致休眠,因此不能在中断中使用。
int down_trylock(struct semaphore *sem);
尝试获取信号量,如果能获取到信号量就获取,并且返回 0。如果不能就返回非 0,并且不会进入休眠。
int down_interruptible(struct semaphore *sem)
获取信号量,和 down 类似,只是使用 down 进入休眠状态的线程不能被信号打断。而使用此函数进入休眠以后是可以被信号打断的。
void up(struct semaphore *sem) 释放信号量
典型使用方法:
struct semaphore sem; /* 定义信号量 */
sema_init(&sem, 1); /* 初始化信号量 */
down(&sem); /* 申请信号量 */
/* 临界区 */
up(&sem); /* 释放信号量 */
**
互斥体(mutex)
**
在 FreeRTOS 和 UCOS 中也有互斥体,将信号量的值设置为 1 就可以使用信号量进行互斥访问了,虽然可以通过信号量实现互斥,但是 Linux 提供了一个比信号量更专业的机制来进行互斥,它就是互斥体—mutex。互斥访问表示一次只有一个线程可以访问共享资源,不能递归申请互斥体。
struct mutex {
/* 1: unlocked, 0: locked, negative: locked, possible waiters */
atomic_t count;
spinlock_t wait_lock;
};DEFINE_MUTEX(name) 定义并初始化一个 mutex 变量。
void mutex_init(mutex *lock) 初始化 mutex。
void mutex_lock(struct mutex *lock)
获取 mutex,也就是给 mutex 上锁。如果获取不到就进休眠。
void mutex_unlock(struct mutex *lock) 释放 mutex,也就给 mutex 解锁。
int mutex_trylock(struct mutex *lock)
尝试获取 mutex,如果成功就返回 1,如果失败就返回 0。
int mutex_is_locked(struct mutex *lock)
判断 mutex 是否被获取,如果是的话就返回1,否则返回 0。
int mutex_lock_interruptible(struct mutex *lock)
使用此函数获取信号量失败进入休眠以后可以被信号打断。
在使用 mutex 之前要先定义一个 mutex 变量。在使用 mutex 的时候要注意如下几点:
①、 mutex 可以导致休眠,因此不能在中断中使用 mutex,中断中只能使用自旋锁。
②、和信号量一样, mutex 保护的临界区可以调用引起阻塞的 API 函数。
③、因为一次只有一个线程可以持有 mutex,因此,必须由 mutex 的持有者释放 mutex。并且 mutex 不能递归上锁和解锁。
典型使用方法:
示例代码 47.5.2.1 互斥体使用示例
1 struct mutex lock; /* 定义一个互斥体 */
2 mutex_init(&lock); /* 初始化互斥体 */
3
4 mutex_lock(&lock); /* 上锁 */
5 /* 临界区 */
6 mutex_unlock(&lock); /* 解锁 */