MapReduce对应的java类:
package com.paic;import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
/** * * 描述:WordCount explains by Felix * @author Hadoop Dev Group */
public class WordCount
{ /** * MapReduceBase类:实现了Mapper和Reducer接口的基类(其中的方法只是实现接口,而未作任何事情) * Mapper接口: * WritableComparable接口:实现WritableComparable的类可以相互比较。所有被用作key的类应该实现此接口。 * Reporter 则可用于报告整个应用的运行进度,本例中未使用。 * */ public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { /** * LongWritable, IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类,这些类实现了WritableComparable接口, * 都能够被串行化从而便于在分布式环境中进行数据交换,你可以将它们分别视为long,int,String 的替代品。 */ private final static IntWritable one = new IntWritable(10); private Text word = new Text(); /** * Mapper接口中的map方法: * void map(K1 key, V1 value, OutputCollector<K2,V2> output, Reporter reporter) * 映射一个单个的输入k/v对到一个中间的k/v对 * 输出对不需要和输入对是相同的类型,输入对可以映射到0个或多个输出对。 * OutputCollector接口:收集Mapper和Reducer输出的<k,v>对。 * OutputCollector接口的collect(k, v)方法:增加一个(k,v)对到output */ public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { //String line = value.toString(); StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); output.collect(word, one); } } } public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += values.next().get(); } output.collect(key, new IntWritable(sum)); } } public static void main(String[] args) throws Exception { /** * JobConf:map/reduce的job配置类,向hadoop框架描述map-reduce执行的工作 * 构造方法:JobConf()、JobConf(Class exampleClass)、JobConf(Configuration conf)等 */
// System.setProperty("HADOOP_HOME", "D:\\HADOOP_HOME");
// System.setProperty("path", "D:\\HADOOP_HOME\\bin");JobConf conf = new JobConf(WordCount.class); conf.setJobName("wordcount"); //设置一个用户定义的job名称 conf.setOutputKeyClass(Text.class); //为job的输出数据设置Key类 conf.setOutputValueClass(IntWritable.class); //为job输出设置value类 conf.setMapperClass(Map.class); //为job设置Mapper类 conf.setCombinerClass(Reduce.class); //为job设置Combiner类 conf.setReducerClass(Reduce.class); //为job设置Reduce类 conf.setInputFormat(TextInputFormat.class); //为map-reduce任务设置InputFormat实现类 conf.setOutputFormat(TextOutputFormat.class); //为map-reduce任务设置OutputFormat实现类 /** * InputFormat描述map-reduce中对job的输入定义 * setInputPaths():为map-reduce job设置路径数组作为输入列表 * setInputPath():为map-reduce job设置路径数组作为输出列表 */ FileInputFormat.setInputPaths(conf, new Path("D:\\out3.txt")); FileOutputFormat.setOutputPath(conf, new Path("D:\\out4")); JobClient.runJob(conf); //运行一个job }
}