当前位置: 代码迷 >> 综合 >> 大数据技术--Spark Streaming
  详细解决方案

大数据技术--Spark Streaming

热度:70   发布时间:2023-10-23 02:09:14.0

到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈。从它的视角来看,目前的大数据处理可以分为如以下三个类型。 

  • 复杂的批量数据处理(batch data processing),通常的时间跨度在数十分钟到数小时之间。
  • 基于历史数据的交互式查询(interactive query),通常的时间跨度在数十秒到数分钟之间。
  • 基于实时数据流的数据处理(streaming data processing),通常的时间跨度在数百毫秒到数秒之间。 
目前已有很多相对成熟的开源软件来处理以上三种情景,我们可以利用MapReduce来进行批量数据处理,可以用Impala来进行交互式查询,对于流式数据处理,我们可以采用Storm。对于大多数互联网公司来说,一般都会同时遇到以上三种情景,那么在使用的过程中这些公司可能会遇到如下的不便。 

  • 三种情景的输入输出数据无法无缝共享,需要进行格式相互转换。
  • 每一个开源软件都需要一个开发和维护团队,提高了成本。
  • 在同一个集群中对各个系统协调资源分配比较困难。 

BDAS就是以Spark为基础的一套软件栈,利用基于内存的通用计算模型将以上三种情景一网打尽,同时支持Batch、Interactive、Streaming的处理,且兼容支持HDFS和S3等分布式文件系统,可以部署在YARN和Mesos等流行的集群资源管理器之上。BDAS的构架如图1所示,其中Spark可以替代MapReduce进行批处理,利用其基于内存的特点,特别擅长迭代式和交互式数据处理;Shark处理大规模数据的SQL查询,兼容Hive的HQL。本文要重点介绍的Spark Streaming,在整个BDAS中进行大规模流式处理。


大数据技术--Spark Streaming


Spark Streaming构架 

  • 计算流程:Spark Streaming是将流式计算分解成一系列短小的批处理作业。这里的批处理引擎是Spark,也就是把Spark Streaming的输入数据按照batch size(如1秒)分成一段一段的数据(Discretized Stream),每一段数据都转换成Spark中的RDD(Resilient Distributed Dataset),然后将Spark Streaming中对DStream的Transformation操作变为针对Spark中对RDD的Transformation操作,将RDD经过操作变成中间结果保存在内存中。整个流式计算根据业务的需求可以对中间的结果进行叠加,或者存储到外部设备。图2显示了Spark Streaming的整个流程。
大数据技术--Spark Streaming


容错性:对于流式计算来说,容错性至关重要。首先我们要明确一下Spark中RDD的容错机制。每一个RDD都是一个不可变的分布式可重算的数据集,其记录着确定性的操作继承关系(lineage),所以只要输入数据是可容错的,那么任意一个RDD的分区(Partition)出错或不可用,都是可以利用原始输入数据通过转换操作而重新算出的。

大数据技术--Spark Streaming

  • 对于Spark Streaming来说,其RDD的传承关系如图3所示,图中的每一个椭圆形表示一个RDD,椭圆形中的每个圆形代表一个RDD中的一个Partition,图中的每一列的多个RDD表示一个DStream(图中有三个DStream),而每一行最后一个RDD则表示每一个Batch Size所产生的中间结果RDD。我们可以看到图中的每一个RDD都是通过lineage相连接的,由于Spark Streaming输入数据可以来自于磁盘,例如HDFS(多份拷贝)或是来自于网络的数据流(Spark Streaming会将网络输入数据的每一个数据流拷贝两份到其他的机器)都能保证容错性。所以RDD中任意的Partition出错,都可以并行地在其他机器上将缺失的Partition计算出来。这个容错恢复方式比连续计算模型(如Storm)的效率更高。 
  • 实时性:对于实时性的讨论,会牵涉到流式处理框架的应用场景。Spark Streaming将流式计算分解成多个Spark Job,对于每一段数据的处理都会经过Spark DAG图分解,以及Spark的任务集的调度过程。对于目前版本的Spark Streaming而言,其最小的Batch Size的选取在0.5~2秒钟之间(Storm目前最小的延迟是100ms左右),所以Spark Streaming能够满足除对实时性要求非常高(如高频实时交易)之外的所有流式准实时计算场景。

  • 扩展性与吞吐量:Spark目前在EC2上已能够线性扩展到100个节点(每个节点4Core),可以以数秒的延迟处理6GB/s的数据量(60M records/s),其吞吐量也比流行的Storm高2~5倍,图4是Berkeley利用WordCount和Grep两个用例所做的测试,在Grep这个测试中,Spark Streaming中的每个节点的吞吐量是670k records/s,而Storm是115k records/s。

Spark Streaming案例分析 

在互联网应用中,网站流量统计作为一种常用的应用模式,需要在不同粒度上对不同数据进行统计,既有实时性的需求,又需要涉及到聚合、去重、连接等较为复杂的统计需求。传统上,若是使用Hadoop MapReduce框架,虽然可以容易地实现较为复杂的统计需求,但实时性却无法得到保证;反之若是采用Storm这样的流式框架,实时性虽可以得到保证,但需求的实现复杂度也大大提高了。Spark Streaming在两者之间找到了一个平衡点,能够以准实时的方式容易地实现较为复杂的统计需求。 下面介绍一下使用Kafka和Spark Streaming搭建实时流量统计框架。 

  • 数据暂存:Kafka作为分布式消息队列,既有非常优秀的吞吐量,又有较高的可靠性和扩展性,在这里采用Kafka作为日志传递中间件来接收日志,抓取客户端发送的流量日志,同时接受Spark Streaming的请求,将流量日志按序发送给Spark Streaming集群。
  • 数据处理:将Spark Streaming集群与Kafka集群对接,Spark Streaming从Kafka集群中获取流量日志并进行处理。Spark Streaming会实时地从Kafka集群中获取数据并将其存储在内部的可用内存空间中。当每一个batch窗口到来时,便对这些数据进行处理。 
  • 结果存储:为了便于前端展示和页面请求,处理得到的结果将写入到数据库中。 

相比于传统的处理框架,Kafka+Spark Streaming的架构有以下几个优点。 

  • Spark框架的高效和低延迟保证了Spark Streaming操作的准实时性。
  • 利用Spark框架提供的丰富API和高灵活性,可以精简地写出较为复杂的算法。 
  • 编程模型的高度一致使得上手Spark Streaming相当容易,同时也可以保证业务逻辑在实时处理和批处理上的复用。 
Spark Streaming提供了一套高效、可容错的准实时大规模流式处理框架,它能和批处理及即时查询放在同一个软件栈中,降低学习成本。如果你学会了Spark编程,那么也就学会了Spark Streaming编程,如果理解了Spark的调度和存储,那么Spark Streaming也类似。对开源软件感兴趣的读者,我们可以一起贡献社区。目前Spark已在Apache孵化器中。按照目前的发展趋势,Spark Streaming一定将会得到更大范围的使用。 
  相关解决方案