均匀分布(Uniform Distribution)
一个连续随机变量XXX在区间[a,b][a,b][a,b]上具有均匀分布,记作X?Uniform(a,b)X\sim Uniform(a,b)X?Uniform(a,b),当它的概率密度函数满足:
fX(x)={1b?aa≤x≤b0x<aorx>bf_X(x)=\left\{ \begin{array}{rcl} \frac{1}{b-a} & & {a\le x\le b} \\ 0 & & {x<a\ or\ x > b } \end{array} \right. fX?(x)={
b?a1?0??a≤x≤bx<a or x>b?
它的分布函数如下所示:
FX(x)={0x<ax?ab?aa≤x≤b1x>bF_X(x)=\left\{ \begin{array}{rcl} 0 & & {x<a}\\ \frac{x-a}{b-a} & & {a\le x\le b} \\ 1 & & {x > b } \end{array} \right. FX?(x)=????0b?ax?a?1??x<aa≤x≤bx>b?
分布函数的图像如图所示:
很容易的,我们可以求出相应的期望和方差:
EX=a+b2EX=\cfrac{a+b}{2} EX=2a+b?
又有
EX2=∫?∞∞x2fX(x)dx=∫abx2(1b?a)dx=a2+ab+b23\begin{array}{rcl} EX^2 & = & \int_{-\infty}^\infty x^2f_X(x)dx\\ & = & \int_a ^b x^2(\frac{1}{b-a})dx\\ & = & \cfrac{a^2+ab+b^2}{3} \end{array} EX2?===?∫?∞∞?x2fX?(x)dx∫ab?x2(b?a1?)dx3a2+ab+b2??
因此:
Var(X)=EX2?(EX)2=(b?a)212Var(X)=EX^2-(EX)^2=\cfrac{(b-a)^2}{12} Var(X)=EX2?(EX)2=12(b?a)2?