参考博客 https://cloud.tencent.com/developer/article/1738836
数据类型为左流 FlinkClick(userid=gk01, click=Pay, ctime=2020-12-14 09:55:00.000) ; 右流为 FlinkPay(userid=gk01, payway=alipy, ptime=2020-12-14 09:58:00.000)
join的这段代码如下
clickOut.keyBy(t->t.getUserid()).intervalJoin(payOunt.keyBy(t->t.getUserid())).between(Time.minutes(1),Time.minutes(5)).lowerBoundExclusive() //默认是闭区间,这样就变成了开区间.upperBoundExclusive().process(new ProcessJoinFunction<FlinkClick, FlinkPay, String>() {@Overridepublic void processElement(FlinkClick left, FlinkPay right, Context ctx, Collector<String> out) throws Exception {out.collect(StringUtils.join(Arrays.asList(left.getUserid(),left.getClick(),right.getPayway()),'\t'));}}).print().setParallelism(1);
一:watermark生成规则:
watermark的计算为 min(ctime,ptime)-watermark (watermark为左右流定义的乱序时间,我这里设置的0),贴出其中一个流的demo,注意watermark
env.addSource(payConsumer).map(new MapFunction<String, FlinkPay>() {@Overridepublic FlinkPay map(String pv) throws Exception {JSONObject clickObject = JSONObject.parseObject(pv);String userid = clickObject.getString("userid");String payway = clickObject.getString("payway");String ptime = clickObject.getString("ptime");FlinkPay payO = new FlinkPay(userid, payway, ptime);return payO;}}).assignTimestampsAndWatermarks(WatermarkStrategy.<FlinkPay>forBoundedOutOfOrderness(Duration.ZERO) //watermark时间.withTimestampAssigner(new SerializableTimestampAssigner<FlinkPay>() {@Overridepublic long extractTimestamp(FlinkPay element, long recordTimestamp) {Date dateP = new Date();try {System.out.println(element);dateP = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS").parse(element.getPtime());} catch (ParseException e) {e.printStackTrace();}
// System.out.println(dateP.getTime());return dateP.getTime();}}));
二:状态清理机制
贴上几段源码,均在 IntervalJoinOperator 类中
private transient MapState<Long, List<BufferEntry<T1>>> leftBuffer;
private transient MapState<Long, List<BufferEntry<T2>>> rightBuffer;@Override
public void initializeState(StateInitializationContext context) throws Exception {super.initializeState(context);this.leftBuffer = context.getKeyedStateStore().getMapState(new MapStateDescriptor<>(LEFT_BUFFER,LongSerializer.INSTANCE,new ListSerializer<>(new BufferEntrySerializer<>(leftTypeSerializer))));this.rightBuffer = context.getKeyedStateStore().getMapState(new MapStateDescriptor<>(RIGHT_BUFFER,LongSerializer.INSTANCE,new ListSerializer<>(new BufferEntrySerializer<>(rightTypeSerializer))));
}
在IntervalJoinOperator中,会利用两个MapState分别缓存左流和右流的数据。其中,Long表示时间时间戳,List<BufferEntry<T>>表示该时刻到来的数据记录,当左流和右流有数据到达时,会分别调用processElement1()和processElement2()方法,它们都调用了processElement()方法
@Overridepublic void processElement1(StreamRecord<T1> record) throws Exception {processElement(record, leftBuffer, rightBuffer, lowerBound, upperBound, true);} @Overridepublic void processElement2(StreamRecord<T2> record) throws Exception {processElement(record, rightBuffer, leftBuffer, -upperBound, -lowerBound, false);}private <THIS, OTHER> void processElement(final StreamRecord<THIS> record,final MapState<Long, List<IntervalJoinOperator.BufferEntry<THIS>>> ourBuffer,final MapState<Long, List<IntervalJoinOperator.BufferEntry<OTHER>>> otherBuffer,final long relativeLowerBound,final long relativeUpperBound,final boolean isLeft) throws Exception {final THIS ourValue = record.getValue();final long ourTimestamp = record.getTimestamp();if (ourTimestamp == Long.MIN_VALUE) {throw new FlinkException("Long.MIN_VALUE timestamp: Elements used in " +"interval stream joins need to have timestamps meaningful timestamps.");}if (isLate(ourTimestamp)) {return;}addToBuffer(ourBuffer, ourValue, ourTimestamp);for (Map.Entry<Long, List<BufferEntry<OTHER>>> bucket: otherBuffer.entries()) {final long timestamp = bucket.getKey();if (timestamp < ourTimestamp + relativeLowerBound ||timestamp > ourTimestamp + relativeUpperBound) {continue;}for (BufferEntry<OTHER> entry: bucket.getValue()) {if (isLeft) {collect((T1) ourValue, (T2) entry.element, ourTimestamp, timestamp);} else {collect((T1) entry.element, (T2) ourValue, timestamp, ourTimestamp);}}}long cleanupTime = (relativeUpperBound > 0L) ? ourTimestamp + relativeUpperBound : ourTimestamp;if (isLeft) {internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_LEFT, cleanupTime);} else {internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_RIGHT, cleanupTime);}}
代码最后调用TimerService.registerEventTimeTimer(),注册时间戳为timestamp+relativeUpperBound的定时器,该定时器负责在水印超过区间的上界时执行状态的清理逻辑,防止数据堆积。注意左右流的定时器所属的namespace是不同的,具体逻辑位于onEventTime()方法中
@Overridepublic void onEventTime(InternalTimer<K, String> timer) throws Exception {long timerTimestamp = timer.getTimestamp();String namespace = timer.getNamespace();logger.trace("onEventTime @ {}", timerTimestamp);switch (namespace) {case CLEANUP_NAMESPACE_LEFT: {long timestamp = (upperBound <= 0L) ? timerTimestamp : timerTimestamp - upperBound;logger.trace("Removing from left buffer @ {}", timestamp);leftBuffer.remove(timestamp);break;}case CLEANUP_NAMESPACE_RIGHT: {long timestamp = (lowerBound <= 0L) ? timerTimestamp + lowerBound : timerTimestamp;logger.trace("Removing from right buffer @ {}", timestamp);rightBuffer.remove(timestamp);break;}default:throw new RuntimeException("Invalid namespace " + namespace);}}
先把测试数据及结果贴在这里
id | 左流数据时间戳(ctime) | 右流数据时间戳(ptime) | 左流清理时间 | 右侧清理时间 |
1 | 2020-12-14 01:55:00.000 | 无 | 2020-12-14 02:00:00.000 | |
2 | 无 | 2020-12-14 01:55:00.000 | 2020-12-14 01:55:00.000 |
对这个结果说明一下:
我们在自己的代码里设置了:.between(Time.minutes(1),Time.minutes(5))
上述源码中有这一行
long cleanupTime = (relativeUpperBound > 0L) ? ourTimestamp + relativeUpperBound : ourTimestamp;
从这里我们就可以计算左右流的清理时间了:
当左流数据进来时,(lowerBound, upperBound) 为 (1 ,5) ,当右流数据进来时,(lowerBound, upperBound) 为 (-5 ,-1),其实就是 left+1min < right <left+5min ,反过来就是 right -5min < left <right -1min
2020-12-14 01:55:00.000 的左侧数据进来,upperBound大于0,cleanupTime = 时间戳+5min 即等于2020-12-14 02:00:00.000;这是因为,当右侧流在2020-12-14 02:00:00.000需要查找左侧流的数据时间为 [2020-12-14 01:55:00.000,2020-12-14 01:59:00.000],所以watermark> 2020-12-14 02:00:00.000 时可以清除2020-12-14 01:55:00.000的数据
2020-12-14 01:55:00.000的右侧数据进来,upperBound小于0,clearnupTime = 时间戳,即等于 2020-12-14 01:55:00.000;这是因为,左侧数据流在 2020-12-14 01:55:00.000时,需要查找的右侧流时间戳范围 [2020-12-14 01:56:00.000, 2020-12-14 02:00:00.000],所以当watermark达到2020-12-14 01:55:00.000时 可以清除 2020-12-14 01:55:00.000 的数据
在 https://cloud.tencent.com/developer/article/1417447 这篇博客中,博主说watermark讲到 WaterMark是根据实际最小值减去UpperBound生成,即:Min(左,右)-upperBound,个人觉得不太对,如果有小伙伴对我这篇博客有疑问,欢迎留言,会积极改正!!