题意:
n个人排队,m个意愿,每个意愿给两个数a,b,意思是a和b想站一起,问最后能否完全符合他们的意愿排成一队。
思路:
- 当一个人想站一起的人数超过两人那么肯定是no
- 如果关系构成了一个环,那么肯定也是no,当一个人想和两个人站一起但那两个人也想站一起的情况。
之前自己也想到了,用了建图+拓扑排序+并查集,想复杂了。
错误代码
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e5 + 10, M = N * 2;
int h[N * 2], e[M], ne[M], idx;
int q[M * 2];
int n, m;int p[N]; //存储每个点的祖宗节点// 返回x的祖宗节点
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);return p[x];
}// 初始化,假定节点编号是1~n// 合并a和b所在的两个集合:void add(int a, int b) // 添加一条边a->b
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
int d[M * 2];
int dd[M * 2];
bool topsort()
{
int hh = 0, tt = -1;// d[i] 存储点i的入度for (int i = 0; i <= n; i ++ ){
if (!d[i]) q[ ++ tt] = i;}while (hh <= tt){
int t = q[hh ++ ];for (int i = h[t]; i != -1; i = ne[i]){
int j = e[i];if (-- d[j] == 0)q[ ++ tt] = j;}}// 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。return tt == n;
}signed main()
{
memset(h, -1, sizeof h);cin >> n >> m;for (int i = 1; i <= n; i ++ ) p[i] = i;for (int i = 1; i <= m; i ++ ){
int a, b;cin >> a >> b;add(a, b);d[b] ++;dd[a] ++;dd[b] ++;p[find(a)] = find(b);}bool f = 0;int cnt = 0;for (int i = 1; i <= n; i ++ ){
if (dd[i] == 2) cnt ++;if (dd[i] > 2 && !f){
f = 1;cout << "No";return 0;}}if (cnt > n - 2){
cout << "No"; return 0;}set<int> qq;for (int i = 1; i <= n; i ++ ){
qq.insert(find(i));}for(auto i : qq){
// cout << i << " ";add(0, i);d[i] ++;}if (topsort()) cout << "Yes" << endl;else cout << "No" << endl;return 0;
}
正确代码
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
int d[N];
int f[N];
int p[N]; //存储每个点的祖宗节点// 返回x的祖宗节点
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);return p[x];
}int main()
{
int n, m;cin >> n >> m;bool f = 0;// 初始化,假定节点编号是1~nfor (int i = 1; i <= n; i ++ ) p[i] = i;for (int i = 1; i <= m; i ++ ){
int a, b; cin >> a >> b;// 合并a和b所在的两个集合:if (find(a) == find(b)){
cout << "No" << endl;return 0;}p[find(a)] = find(b);d[a] ++;d[b] ++;}for (int i = 1; i <= n; i ++ ){
if (d[i] > 2) {
cout << "No" << endl;return 0;}}cout << "Yes" << endl;return 0;
}