当前位置: 代码迷 >> 综合 >> 参数估计(二)
  详细解决方案

参数估计(二)

热度:101   发布时间:2023-10-13 00:33:51.0

1.距估计步骤
已知

α1=E(X)α2=D(X)+[E(X)]2{ \alpha }_{ 1 }=E(X)\\ { \alpha }_{ 2 }=D(X)+{ [E(X)] }^{ 2 }α1?=E(X)α2?=D(X)+[E(X)]2
A1=X?A2=1n∑i=1nXi2{ A }_{ 1 }=\overline{X} \\ { A }_{ 2 }=\frac { 1 }{ n } \sum _{ i=1 }^{ n }{ { X }_{ i }^{ 2 } }A1?=XA2?=n1?i=1n?Xi2?

例子:求总体均值μ=E(X)\mu=E(X)μ=E(X)与方差σ2=D(X){\sigma}^{2}=D(X)σ2=D(X)的矩估计量

(1)列出总体的前m阶原点矩
α1=E(X)=μ{\alpha}_{1}=E(X)=\muα1?=E(X)=μ
α2=E(X2)=D(X)+[E(X)]2=σ2+μ2{\alpha}_{2}=E({X}^{2})=D(X)+{ [E(X)] }^{ 2 }={ \sigma }^{ 2 } + { \mu }^{ 2 }α2?=E(X2)=D(X)+[E(X)]2=σ2+μ2
(2)把需要求的参数用总体距表示出来:
μ=α1\mu={\alpha}_{1}μ=α1?
σ2=α2?α12{ \sigma }^{ 2 }={\alpha}_{2}-{ {\alpha}_{1}}^{2}σ2=α2??α1?2
(3)用样本的各阶原点矩代替总体原点矩
μ^=A1=Xˉσ^2=A2?A12=1n∑i=1nXi2?Xˉ2=S?2\hat { \mu } ={ A }_{ 1 }=\bar { X } \\ { \hat { \sigma } }^{ 2 }={ A }_{ 2 }-{ { A }_{ 1 } }^{ 2 }=\frac { 1 }{ n } \sum _{ i=1 }^{ n }{ { X }_{ i }^{ 2 } }-{ \bar { X } }^{ 2 }={ S }^{ *2 }μ^?=A1?=Xˉσ^2=A2??A1?2=n1?i=1n?Xi2??Xˉ2=S?2

当给出概率密度函数的时候
总体的均值=[x*(概率密度函数)]的积分

离散型的
总体的均值=(各点值??各点概率)相加

2.极大似然估计步骤
离散型
各个实验结果对应的概率相乘即为似然函数
连续型

(1)写出似然函数
L(θ)={∏i=1nf(xi;θ1,θ2,...,θm),连续总体∏i=1nP(Xi=xi;θ1,θ2,...,θm),离散总体L(\theta )=\begin{cases} \prod _{ i=1 }^{ n }{ f\left( { x }_{ i };{\theta}_{1},{\theta}_{2},...,{\theta}_{m} \right) } ,连续总体 \\ \prod _{ i=1 }^{ n }{ P\left( { { X }_{ i }=x }_{ i };{\theta}_{1},{\theta}_{2},...,{\theta}_{m} \right) ,离散总体 } \end{cases}L(θ)={ i=1n?f(xi?;θ1?,θ2?,...,θm?),i=1n?P(Xi?=xi?;θ1?,θ2?,...,θm?),?
(2)对似然函数取对数
lnL(θ)={∏i=1nlnf(xi;θ1,θ2,...,θm),连续总体∏i=1nlnP(Xi=xi;θ1,θ2,...,θm),离散总体lnL(\theta )=\begin{cases} \prod _{ i=1 }^{ n }{ lnf\left( { x }_{ i };{\theta}_{1},{\theta}_{2},...,{\theta}_{m} \right) } ,连续总体 \\ \prod _{ i=1 }^{ n }{ lnP\left( { { X }_{ i }=x }_{ i };{\theta}_{1},{\theta}_{2},...,{\theta}_{m} \right) ,离散总体 } \end{cases}lnL(θ)={ i=1n?lnf(xi?;θ1?,θ2?,...,θm?),i=1n?lnP(Xi?=xi?;θ1?,θ2?,...,θm?),?
(3)建立似然方程,对m个θ\thetaθ求偏导
?lnL(θ1,θ2,...,θm)?θj=0,j=1,..,m\frac { \partial lnL({\theta}_{1},{\theta}_{2},...,{\theta}_{m}) }{ \partial { \theta }_{ j } } =0,j=1,..,m?θj??lnL(θ1?,θ2?,...,θm?)?=0,j=1,..,m
(4)解出似然方程,求出最大的θ\thetaθ,若不可微分,用其他方法.

鉴定估计的标准

无偏性
样本k阶原点距是总体k阶原点矩的无偏估计吗

E(Ak)=1n∑i=1nXik=E(Xik)=E(Xk)=αkE({ A }_{ k })=\frac { 1 }{ n } \sum _{ i=1 }^{ n }{ { X }_{ i }^{ k } } =E({ X }_{ i }^{ k })=E({ X }^{ k })={ \alpha }_{ k }E(Ak?)=n1?i=1n?Xik?=E(Xik?)=E(Xk)=αk?

有效性

比较无偏性后,比较方差,
1.先算出两个估计量的方差

相合性
有效估计的均方误差准则

区间估计公式

(1)μ的区间估计\mu的区间估计μ

(Xˉ?σnμα2,Xˉ+σnμα2)(\bar { X } -\frac { \sigma }{ \sqrt { n } } { \mu }_{ \frac { \alpha }{ 2 } },\bar { X } +\frac { \sigma }{ \sqrt { n } } { \mu }_{ \frac { \alpha }{ 2 } })(Xˉ?n ?σ?μ2α??,Xˉ+n ?σ?μ2α??)

σ2未知时μ的区间估计{\sigma}^{2}未知时\mu的区间估计σ2μ

(Xˉ?S?ntα2(n?1),Xˉ+S?ntα2(n?1))(\bar { X } -\frac { { S }^{ * } }{ \sqrt { n } } { t }_{ \frac { \alpha }{ 2 } }(n-1),\bar { X } +\frac { { S }^{ * } }{ \sqrt { n } } { t }_{ \frac { \alpha }{ 2 } }(n-1))(Xˉ?n ?S??t2α??(n?1),Xˉ+n ?S??t2α??(n?1))

σ2{\sigma}^{2}σ2的区间估计

((n?1)S?2χα22(n?1),(n?1)S?2χ1?α22(n?1))(\frac { (n-1){ { S }^{ * } }^{ 2 } }{ { \chi }_{ \frac { \alpha }{ 2 } }^{ 2 }(n-1) } ,\frac { (n-1){ { S }^{ * } }^{ 2 } }{ { \chi }_{ 1-\frac { \alpha }{ 2 } }^{ 2 }(n-1) } )(χ2α?2?(n?1)(n?1)S?2?,χ1?2α?2?(n?1)(n?1)S?2?)

(2)μ1?μ2{\mu}_{1}-{\mu}_{2}μ1??μ2?的区间估计

{(Xˉ?Yˉ)?μα2σ12n1+σ22n2}\left\{ (\bar { X } -\bar { Y } )\mp { \mu }_{ \frac { \alpha }{ 2 } }\sqrt { \frac { { \sigma }_{ 1 }^{ 2 } }{ { n }_{ 1 } } +\frac { { \sigma }_{ 2 }^{ 2 } }{ { n }_{ 2 } } } \right\}{ (Xˉ?Yˉ)?μ2α??n1?σ12??+n2?σ22?? ?}

σ12=σ22=σ2但σ2未知{ \sigma }_{ 1 }^{ 2 }={ \sigma }_{ 2 }^{ 2 }={ \sigma }^{ 2 }但{ \sigma }^{ 2 }未知σ12?=σ22?=σ2σ2

{(Xˉ?Yˉ)?tα2(n1+n2?2)Sw1n1+1n2}\left\{ (\bar { X } -\bar { Y } )\mp { t }_{ \frac { \alpha }{ 2 } }({ n }_{ 1 }+{ n }_{ 2 }-2){ S }_{ w }\sqrt { \frac { 1 }{ { n }_{ 1 } } +\frac { 1 }{ { n }_{ 2 } } } \right\}{ (Xˉ?Yˉ)?t2α??(n1?+n2??2)Sw?n1?1?+n2?1? ?}
其中Sw=(n1?1)S1?n12+(n2?1)S2?2n2n1+n2?2{ S }_{ w }=\sqrt { \frac { ({ n }_{ 1 }-1){ { S }_{ 1 }^{ * } }_{ { n }_{ 1 } }^{ 2 }+({ n }_{ 2 }-1){ { S }_{ 2 }^{ *2 } }_{ { n }_{ 2 } } }{ { n }_{ 1 }+{ n }_{ 2 }-2 } }Sw?=n1?+n2??2(n1??1)S1??n1?2?+(n2??1)S2?2?n2??? ?

σ12和σ22均未知,但n1=n2=n{ \sigma }_{ 1 }^{ 2 }和{ \sigma }_{ 2 }^{ 2 }均未知,但{n}_{1}={n}_{2}=nσ12?σ22?,n1?=n2?=n

{Zˉ?SZ?ntα2(n?1),Zˉ+SZ?ntα2(n?1)}\left\{ \bar { Z } -\frac { { S }_{ Z }^{ * } }{ \sqrt { n } } { t }_{ \frac { \alpha }{ 2 } }(n-1),\bar { Z } +\frac { { S }_{ Z }^{ * } }{ \sqrt { n } } { t }_{ \frac { \alpha }{ 2 } }(n-1) \right\}{ Zˉ?n ?SZ???t2α??(n?1),Zˉ+n ?SZ???t2α??(n?1)}
其中Zˉ=Xˉ?Yˉ,SZ?=1n?1∑i=1n(Zi?Zˉ)2\bar { Z } =\bar { X } -\bar { Y },{ S }_{ Z }^{ * }=\sqrt { \frac { 1 }{ n-1 } \sum _{ i=1 }^{ n }{ { ({ Z }_{ i }-\bar { Z } ) }^{ 2 } } }Zˉ=Xˉ?Yˉ,SZ??=n?11?i=1n?(Zi??Zˉ)2 ?

σ12/σ22{ \sigma }_{ 1 }^{ 2 }/{ \sigma }_{ 2 }^{ 2 }σ12?/σ22?的区间估计

{F1?α2(n2?1,n1?1)S1?n12S2?n22,Fα2(n2?1,n1?1)S1?n12S2?n22}\left\{ { F }_{ 1-\frac { \alpha }{ 2 } }({ n }_{ 2 }-1,{ n }_{ 1 }-1)\frac { { { S }_{ 1 }^{ * } }_{ { n }_{ 1 } }^{ 2 } }{ { { S }_{ 2 }^{ * } }_{ { n }_{ 2 } }^{ 2 } } ,{ F }_{ \frac { \alpha }{ 2 } }({ n }_{ 2 }-1,{ n }_{ 1 }-1)\frac { { { S }_{ 1 }^{ * } }_{ { n }_{ 1 } }^{ 2 } }{ { { S }_{ 2 }^{ * } }_{ { n }_{ 2 } }^{ 2 } } \right\}{ F1?2α??(n2??1,n1??1)S2??n2?2?S1??n1?2??,F2α??(n2??1,n1??1)S2??n2?2?S1??n1?2??}

非正态总体的区间估计

指数分布λ的区间估计

{χ1?α22(2n)2nXˉ,χα22(2n)2nXˉ}\left\{ \frac { { \chi }_{ 1-\frac { \alpha }{ 2 } }^{ 2 }(2n) }{ 2n\bar { X } } ,\frac { { \chi }_{ \frac { \alpha }{ 2 } }^{ 2 }(2n) }{ 2n\bar { X } } \right\}{ 2nXˉχ1?2α?2?(2n)?,2nXˉχ2α?2?(2n)?}

0-1分布的p区间估计

{12a(b?b2?4ac),12a(b+b2?4ac)}\left\{ \frac { 1 }{ 2a } (b-\sqrt { { b }^{ 2 }-4ac } ),\frac { 1 }{ 2a } (b+\sqrt { { b }^{ 2 }-4ac } ) \right\}{ 2a1?(b?b2?4ac ?),2a1?(b+b2?4ac ?)}

单侧区间估计

μ\muμ的具有单侧置信区间下限的区间估计

(Xˉ?S?ntα(n?1),+∞)(\bar { X } -\frac { { S }^{ * } }{ \sqrt { n } } { t }_{ \alpha }(n-1),+\infty )(Xˉ?n ?S??tα?(n?1),+)

μ\muμ的具有单侧置信区间上限的区间估计

(?∞,Xˉ+S?ntα(n?1))(-\infty,\bar { X } +\frac { { S }^{ * } }{ \sqrt { n } } { t }_{ \alpha }(n-1))(?,Xˉ+n ?S??tα?(n?1))