当前位置: 代码迷 >> 综合 >> NYOJ - 18 - The Triangle(动态规划--数字三角形)
  详细解决方案

NYOJ - 18 - The Triangle(动态规划--数字三角形)

热度:123   发布时间:2023-10-09 17:49:57.0

描述

7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
(Figure 1)
Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.

输入
Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.
输出
Your program is to write to standard output. The highest sum is written as an integer.
样例输入
5
7
3 8
8 1 0 
2 7 4 4
4 5 2 6 5
样例输出
30

经典题目,直接说思路吧。动态规划,从下面往上面处理,题目要求从第一层出最后一层某一个位置的路径的最大和,那么我们求从下到上的最大和。dp[i][j]表示从下面到该位置的最大和,于是状态转移方程:dp[i][j] = max(dp[i-1][j],dp[i-1][j-1])+dp[i][j];

#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
int map[101][101];
int dp[101][101]; 
int n;
using namespace std;
int main(){scanf("%d",&n);memset(dp,0,sizeof(dp));for(int i=1 ;i<=n ;i++){for(int j=1 ;j<=i ;j++){scanf("%d",&map[i][j]);dp[i][j] = map[i][j]; }}for(int i=n-1 ;i>=1 ;i--){//直接从倒数第二层处理的,因为最后一层的下一层都是0 for(int j=n ;j>=1 ;j--){dp[i][j] = max(dp[i+1][j],dp[i+1][j+1])+dp[i][j];}}printf("%d\n",dp[1][1]);return 0;
}