当前位置: 代码迷 >> 综合 >> PromQL Metrics 指标类型 Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要)
  详细解决方案

PromQL Metrics 指标类型 Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要)

热度:132   发布时间:2023-09-30 10:11:15.0

PromQL Metrics 指标类型 Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要)

指标类型


从存储上来讲所有的监控指标都是相同的,但是在不同的场景下这些指标又有一些细微的差异。

例如,在 Node Exporter 返回的样本中指标 node_load1 反应的是当前系统的负载状态,随着时间的变化这个指标返回的样本数据是在不断变化的。而指标 node_cpu_seconds_total 所获取到的样本数据却不同,它是一个持续增大的值,因为其反应的是 CPU 的累计使用时间,从理论上讲只要系统不关机,这个值是会一直变大。

为了能够帮助用户理解和区分这些不同监控指标之间的差异,Prometheus 定义了 4 种不同的指标类型:Counter(计数器)Gauge(仪表盘)Histogram(直方图)Summary(摘要)

在 node-exporter(后面会详细讲解)返回的样本数据中,其注释中也包含了该样本的类型。例如:

# HELP node_cpu_seconds_total Seconds the cpus spent in each mode.
# TYPE node_cpu_seconds_total counter
node_cpu_seconds_total{cpu="cpu0",mode="idle"} 362812.7890625

Counter  只增不减的计数器


Counter (只增不减的计数器) 类型的指标其工作方式和计数器一样,只增不减,所以它对于存储诸如服务的 HTTP 请求数量或使用的 CPU 时间之类的信息非常有用

常见的监控指标,如 http_requests_totalnode_cpu_seconds_total 都是 Counter 类型的监控指标。

Counter是一个简单但有强大的工具,例如我们可以在应用程序中记录某些事件发生的次数,通过以时序的形式存储这些数据,我们可以轻松的了解该事件产生速率的变化。 PromQL内置的聚合操作和函数可以让用户对这些数据进行进一步的分析:

例如,通过rate()函数获取HTTP请求量的增长率:

rate(http_requests_total[5m])

查询当前系统中,访问量前10的HTTP地址:

topk(10, http_requests_total)

PromQL Metrics 指标类型 Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要)

可能你会觉得一直增加的数据没什么用处,了解服务从开始有多少请求有什么价值吗?但是需要记住,每个指标都存储了时间戳的所有你的 HTTP 请求数现在可能是 1000 万,但是 Prometheus 也会记录之前某个时间点的值,我们可以去查询过去一个小时内的请求数当然更多的时候我们想要看到的是请求数增加或减少的速度有多快,因此通常情况对于 Counter 指标我们都是去查看变化率而不是本身的数字。PromQL 内置的聚合操作和函数可以让用户对这些数据进行进一步的分析,例如,通过 rate() 函数获取 HTTP 请求的增长率:

rate(http_requests_total[5m])

获取的是当前五分钟的样本数据,样本数据是一个区间,也就是一个时间范围。

counter在绘制图形的时候,会使用rate函数去计算一下变化率,增长率。

Gauge  可增可减的仪表盘


与 Counter 不同,Gauge(可增可减的仪表盘)类型的指标侧重于反应系统的当前状态,因此这类指标的样本数据可增可减,不像counter是一直增长的。

常见指标如 node_memory_MemFree_bytes(当前主机空闲的内存大小)、node_memory_MemAvailable_bytes(可用内存大小)都是 Gauge 类型的监控指标。

由于 Gauge 指标仍然带有时间戳存储,所有我们可以看到随时间变化的值,通常可以直接把它们绘制出来,这样就可以看到值本身而不是变化率了,通过 Gauge 指标,用户可以直接查看系统的当前状态。

在绘制图行查看状态的时候,直接使用指标值就可以绘制出来,因为本身就表示当前的状态。 

PromQL Metrics 指标类型 Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要)

这些简单的指标类型都只是为每个样本获取一个数字,但 Prometheus 的强大之处在于如何让你跟踪它们,比如我们绘制了两张图,一个是 HTTP 请求的变化率,另一个是分配的 gauge 类型的实际内存,直接从图上就可以看出这两个之间有一种关联性,当请求出现峰值的时候,内存的使用也会出现峰值,但是我们仔细观察也会发现在峰值过后,内存使用量并没有恢复到峰值前的水平,整体上它在逐渐增加,这表明很可能应用程序中存在内存泄露的问题,通过这些简单的指标就可以帮助我们找到这些可能存在的问题。

PromQL Metrics 指标类型 Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要)

对于 Gauge 类型的监控指标,通过 PromQL 内置函数 delta() 可以获取样本在一段时间范围内的变化情况。例如,计算 CPU 温度在两个小时内的差异:

delta(cpu_temp_celsius{host="zeus"}[2h])

还可以直接使用 predict_linear() 对数据的变化趋势进行预测。例如,预测系统磁盘空间在 4 个小时之后的剩余情况:这个函数是用来做预测的,predict_linear() 这个函数对于磁盘空间来说的话是非常有用的,因为磁盘在实际使用的过程当中一下子就增长起来了,这是一个缓慢的过程,所以可以根据这个函数来判断4个小时之后磁盘剩余的情况,根据这个情况就可以提前去将磁盘空间清理或者扩容。

predict_linear(node_filesystem_free_bytes[1h], 4 * 3600)

PromQL Metrics 指标类型 Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要)

 

 

 

 ???Histogram 直方图 和 Summary 摘要 使用Histogram和Summary分析数据分布情况


除了 Counter 和 Gauge 类型的监控指标以外,Prometheus 还定义了 Histogram 和 Summary 的指标类型。Histogram 和 Summary 主用用于统计和分析样本的分布情况。

在大多数情况下人们都倾向于使用某些量化指标的平均值,例如 CPU 的平均使用率、页面的平均响应时间,这种方式也有很明显的问题,以系统 API 调用的平均响应时间为例:如果大多数 API 请求都维持在 100ms 的响应时间范围内,而个别请求的响应时间需要 5s,那么就会导致某些 WEB 页面的响应时间落到中位数上,而这种现象被称为长尾问题

为了区分是平均的慢还是长尾的慢,最简单的方式就是按照请求延迟的范围进行分组。例如,统计延迟在 0~10ms 之间的请求数有多少而 10~20ms 之间的请求数又有多少。通过这种方式可以快速分析系统慢的原因。

Histogram 和 Summary 都是为了能够解决这样的问题存在的,通过 Histogram 和Summary 类型的监控指标,我们可以快速了解监控样本的分布情况

Summary

摘要用于记录某些东西的平均大小,可能是计算所需的时间或处理的文件大小,摘要显示两个相关的信息:count(事件发生的次数)和 sum(所有事件的总大小),如下图计算摘要指标可以返回次数为 3 和总和 15,也就意味着 3 次计算总共需要 15s 来处理,平均每次计算需要花费 5s。下一个样本的次数为 10,总和为 113,那么平均值为 11.3,因为两组指标都记录有时间戳,所以我们可以使用摘要来构建一个图表,显示平均值的变化率,比如图上的语句表示的是 5 分钟时间段内的平均速率。

PromQL Metrics 指标类型 Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要)

例如,指标 prometheus_tsdb_wal_fsync_duration_seconds 的指标类型为 Summary,它记录了 Prometheus Server 中 wal_fsync 的处理时间,通过访问 Prometheus Server 的 /metrics 地址,可以获取到以下监控样本数据:

# HELP prometheus_tsdb_wal_fsync_duration_seconds Duration of WAL fsync.
# TYPE prometheus_tsdb_wal_fsync_duration_seconds summary
prometheus_tsdb_wal_fsync_duration_seconds{quantile="0.5"} 0.012352463
prometheus_tsdb_wal_fsync_duration_seconds{quantile="0.9"} 0.014458005
prometheus_tsdb_wal_fsync_duration_seconds{quantile="0.99"} 0.017316173
prometheus_tsdb_wal_fsync_duration_seconds_sum 2.888716127000002
prometheus_tsdb_wal_fsync_duration_seconds_count 216

PromQL Metrics 指标类型 Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要)PromQL Metrics 指标类型 Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要)

PromQL Metrics 指标类型 Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要)和单一的counter和gauge不同的是,summary里面有多个指标。(事件发生的总数和事件发生的总大小,以及事件的分布情况)

  • 事件总数和事件总大小:从上面的样本中可以得知当前 Prometheus Server 进行 wal_fsync 操作的总次数为 216 次,耗时 2.888716127000002s。
  • 分布情况:其中中位数(quantile=0.5 百分之50的操作耗时)的耗时为 0.012352463,9 分位数(quantile=0.9 百分之90的操作)的耗时为 0.014458005s,百分之99的操作耗时0.017316173。

Histogram

摘要非常有用,但是平均值会隐藏一些细节,上图中 10 与 113 的总和包含非常广的范围,如果我们想查看时间花在什么地方了,那么我们就需要直方图了

直方图以 bucket 桶的形式记录数据,所以我们可能有一个桶用于需要 1s 或更少的计算,另一个桶用于 5 秒或更少、10 秒或更少、20 秒或更少、60 秒或更少。该指标返回每个存储桶的计数,其中 3 个在 5 秒或更短的时间内完成,6 个在 10 秒或更短的时间内完成。

Prometheus 中的直方图是累积的,因此所有 10 次计算都属于 60 秒或更少的时间段,而在这 10 次中,有 9 次的处理时间为 20 秒或更少,这显示了数据的分布。所以可以看到我们的大部分计算都在 10 秒以下,只有一个超过 20 秒,这对于计算百分位数很有用。

PromQL Metrics 指标类型 Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要)

在 Prometheus Server 自身返回的样本数据中,我们也能找到类型为 Histogram 的监控指标prometheus_tsdb_compaction_chunk_range_seconds_bucket:可以看到这个值是一直增加的,因为是累计增加的,因为1600是包含前面400和100的。

# HELP prometheus_tsdb_compaction_chunk_range_seconds Final time range of chunks on their first compaction
# TYPE prometheus_tsdb_compaction_chunk_range_seconds histogram
prometheus_tsdb_compaction_chunk_range_seconds_bucket{le="100"} 71
prometheus_tsdb_compaction_chunk_range_seconds_bucket{le="400"} 71
prometheus_tsdb_compaction_chunk_range_seconds_bucket{le="1600"} 71
prometheus_tsdb_compaction_chunk_range_seconds_bucket{le="6400"} 71
prometheus_tsdb_compaction_chunk_range_seconds_bucket{le="25600"} 405
prometheus_tsdb_compaction_chunk_range_seconds_bucket{le="102400"} 25690
prometheus_tsdb_compaction_chunk_range_seconds_bucket{le="409600"} 71863
prometheus_tsdb_compaction_chunk_range_seconds_bucket{le="1.6384e+06"} 115928
prometheus_tsdb_compaction_chunk_range_seconds_bucket{le="6.5536e+06"} 2.5687892e+07
prometheus_tsdb_compaction_chunk_range_seconds_bucket{le="2.62144e+07"} 2.5687896e+07
prometheus_tsdb_compaction_chunk_range_seconds_bucket{le="+Inf"} 2.5687896e+07
prometheus_tsdb_compaction_chunk_range_seconds_sum 4.7728699529576e+13
prometheus_tsdb_compaction_chunk_range_seconds_count 2.5687896e+07

与 Summary 类型的指标相似之处在于 Histogram 类型的样本同样会反应当前指标的记录的总数(以 _count 作为后缀)以及其值的总量(以 _sum 作为后缀)。

不同在于 Histogram 指标直接反应了在不同区间内样本的个数,区间通过标签 le 进行定义。histogram有专门的函数去计算,后面介绍。

同时对于Histogram的指标,我们还可以通过histogram_quantile()函数计算出其值的分位数。不同在于Histogram通过histogram_quantile函数是在服务器端计算的分位数。 而Sumamry的分位数则是直接在客户端计算完成。因此对于分位数的计算而言,Summary在通过PromQL进行查询时有更好的性能表现,而Histogram则会消耗更多的资源。反之对于客户端而言Histogram消耗的资源更少。在选择这两种方式时用户应该按照自己的实际场景进行选择

  相关解决方案