当前位置: 代码迷 >> 综合 >> Android Volley 带你从源码的角度理解Volley
  详细解决方案

Android Volley 带你从源码的角度理解Volley

热度:54   发布时间:2023-09-29 00:20:25.0

Volley的用法我们已经掌握的差不多了,但是对于Volley的工作原理,恐怕有很多朋友还不是很清楚。因此,本篇文章中我们就来一起阅读一下Volley的源码,将它的工作流程整体地梳理一遍。同时,这也是Volley系列的最后一篇文章了。

其实,Volley的官方文档中本身就附有了一张Volley的工作流程图,如下图所示。


Android Volley 带你从源码的角度理解Volley

多数朋友突然看到一张这样的图,应该会和我一样,感觉一头雾水吧?没错,目前我们对Volley背后的工作原理还没有一个概念性的理解,直接就来看这张图自然会有些吃力。不过没关系,下面我们就去分析一下Volley的源码,之后再重新来看这张图就会好理解多了。


说起分析源码,那么应该从哪儿开始看起呢?这就要回顾一下Volley的用法了,还记得吗,使用Volley的第一步,首先要调用Volley.newRequestQueue(context)方法来获取一个RequestQueue对象,那么我们自然要从这个方法开始看起了,代码如下所示:


public static RequestQueue newRequestQueue(Context context) {  return newRequestQueue(context, null);  
}
这个方法仅仅只有一行代码,只是调用了 newRequestQueue()的方法重载,并给第二个参数传入null。那我们看下带有两个参数的newRequestQueue()方法中的代码,如下所示:

public static RequestQueue newRequestQueue(Context context, HttpStack stack) {  File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);  String userAgent = "volley/0";  try {  String packageName = context.getPackageName();  PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);  userAgent = packageName + "/" + info.versionCode;  } catch (NameNotFoundException e) {  }  if (stack == null) {  if (Build.VERSION.SDK_INT >= 9) {  stack = new HurlStack();  } else {  stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));  }  }  Network network = new BasicNetwork(stack);  RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);  queue.start();  return queue;  
}  

可以看到,这里在第10行判断如果stack是等于null的,则去创建一个HttpStack对象,这里会判断如果手机系统版本号是大于9的,则创建一个HurlStack的实例,否则就创建一个HttpClientStack的实例。实际上 HurlStack的内部就是使用HttpURLConnection进行网络通讯的,而HttpClientStack的内部则是使用HttpClient进行网络通讯的,这里为什么这样选择呢?可以参考一篇文章Android访问网络,使用HttpURLConnection还是HttpClient?

创建好了HttpStack之后,接下来又创建了一个Network对象,它是用于根据传入的HttpStack对象来处理网络请求的,紧接着new出一个RequestQueue对象,并调用它的start()方法进行启动,然后将RequestQueue返回,这样newRequestQueue()的方法就执行结束了。


那么RequestQueue的start()方法内部到底执行了什么东西呢?我们跟进去瞧一瞧:

public void start() {  stop();  // Make sure any currently running dispatchers are stopped.  // Create the cache dispatcher and start it.  mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);  mCacheDispatcher.start();  // Create network dispatchers (and corresponding threads) up to the pool size.  for (int i = 0; i < mDispatchers.length; i++) {  NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,  mCache, mDelivery);  mDispatchers[i] = networkDispatcher;  networkDispatcher.start();  }  
}  

这里先是创建了一个CacheDispatcher的实例,然后调用了它的start()方法,接着在一个for循环里去创建NetworkDispatcher的实例,并分别调用它们的start()方法。这里的CacheDispatcher和NetworkDispatcher都是继承自Thread的,而默认情况下for循环会执行四次,也就是说当调用了Volley.newRequestQueue(context)之后,就会有五个线程一直在后台运行,不断等待网络请求的到来, 其中 CacheDispatcher是缓存线程,NetworkDispatcher是网络请求线程。


得到了RequestQueue之后,我们只需要构建出相应的Request,然后调用RequestQueue的add()方法将Request传入就可以完成网络请求操作了,那么不用说,add()方法的内部肯定有着非常复杂的逻辑,我们来一起看一下:

public <T> Request<T> add(Request<T> request) {  // Tag the request as belonging to this queue and add it to the set of current requests.  request.setRequestQueue(this);  synchronized (mCurrentRequests) {  mCurrentRequests.add(request);  }  // Process requests in the order they are added.  request.setSequence(getSequenceNumber());  request.addMarker("add-to-queue");  // If the request is uncacheable, skip the cache queue and go straight to the network.  if (!request.shouldCache()) {  mNetworkQueue.add(request);  return request;  }  // Insert request into stage if there's already a request with the same cache key in flight.  synchronized (mWaitingRequests) {  String cacheKey = request.getCacheKey();  if (mWaitingRequests.containsKey(cacheKey)) {  // There is already a request in flight. Queue up.  Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);  if (stagedRequests == null) {  stagedRequests = new LinkedList<Request<?>>();  }  stagedRequests.add(request);  mWaitingRequests.put(cacheKey, stagedRequests);  if (VolleyLog.DEBUG) {  VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);  }  } else {  // Insert 'null' queue for this cacheKey, indicating there is now a request in  // flight.  mWaitingRequests.put(cacheKey, null);  mCacheQueue.add(request);  }  return request;  }  
}  

可以看到,在第11行的时候会判断当前的请求是否可以缓存,如果不能缓存则在第12行直接将这条请求加入网络请求队列,可以缓存的话则在第33行将这条请求加入缓存队列。在默认情况下,每条请求都是可以缓存的,当然我们也可以调用Request的setShouldCache(false)方法来改变这一默认行为。


OK,那么既然默认每条请求都是可以缓存的,自然就被添加到了缓存队列中,于是一直在后台等待的缓存线程就要开始运行起来了,我们看下CacheDispatcher中的run()方法,代码如下所示:

public class CacheDispatcher extends Thread {  ……  @Override  public void run() {  if (DEBUG) VolleyLog.v("start new dispatcher");  Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);  // Make a blocking call to initialize the cache.  mCache.initialize();  while (true) {  try {  // Get a request from the cache triage queue, blocking until  // at least one is available.  final Request<?> request = mCacheQueue.take();  request.addMarker("cache-queue-take");  // If the request has been canceled, don't bother dispatching it.  if (request.isCanceled()) {  request.finish("cache-discard-canceled");  continue;  }  // Attempt to retrieve this item from cache.  Cache.Entry entry = mCache.get(request.getCacheKey());  if (entry == null) {  request.addMarker("cache-miss");  // Cache miss; send off to the network dispatcher.  mNetworkQueue.put(request);  continue;  }  // If it is completely expired, just send it to the network.  if (entry.isExpired()) {  request.addMarker("cache-hit-expired");  request.setCacheEntry(entry);  mNetworkQueue.put(request);  continue;  }  // We have a cache hit; parse its data for delivery back to the request.  request.addMarker("cache-hit");  Response<?> response = request.parseNetworkResponse(  new NetworkResponse(entry.data, entry.responseHeaders));  request.addMarker("cache-hit-parsed");  if (!entry.refreshNeeded()) {  // Completely unexpired cache hit. Just deliver the response.  mDelivery.postResponse(request, response);  } else {  // Soft-expired cache hit. We can deliver the cached response,  // but we need to also send the request to the network for  // refreshing.  request.addMarker("cache-hit-refresh-needed");  request.setCacheEntry(entry);  // Mark the response as intermediate.  response.intermediate = true;  // Post the intermediate response back to the user and have  // the delivery then forward the request along to the network.  mDelivery.postResponse(request, response, new Runnable() {  @Override  public void run() {  try {  mNetworkQueue.put(request);  } catch (InterruptedException e) {  // Not much we can do about this.  }  }  });  }  } catch (InterruptedException e) {  // We may have been interrupted because it was time to quit.  if (mQuit) {  return;  }  continue;  }  }  }  
}  

代码有点长,我们只挑重点看。首先在11行可以看到一个while(true)循环,说明缓存线程始终是在运行的,接着在第23行会尝试从缓存当中取出响应结果,如何为空的话则把这条请求加入到网络请求队列中,如果不为空的话再判断该缓存是否已过期,如果已经过期了则同样把这条请求加入到网络请求队列中,否则就认为不需要重发网络请求,直接使用缓存中的数据即可。之后会在第39行调用Request的parseNetworkResponse()方法来对数据进行解析,再往后就是将解析出来的数据进行回调了,这部分代码我们先跳过,因为它的逻辑和NetworkDispatcher后半部分的逻辑是基本相同的,那么我们等下合并在一起看就好了,先来看一下NetworkDispatcher中是怎么处理网络请求队列的,代码如下所示:

public class NetworkDispatcher extends Thread {  ……  @Override  public void run() {  Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);  Request<?> request;  while (true) {  try {  // Take a request from the queue.  request = mQueue.take();  } catch (InterruptedException e) {  // We may have been interrupted because it was time to quit.  if (mQuit) {  return;  }  continue;  }  try {  request.addMarker("network-queue-take");  // If the request was cancelled already, do not perform the  // network request.  if (request.isCanceled()) {  request.finish("network-discard-cancelled");  continue;  }  addTrafficStatsTag(request);  // Perform the network request.  NetworkResponse networkResponse = mNetwork.performRequest(request);  request.addMarker("network-http-complete");  // If the server returned 304 AND we delivered a response already,  // we're done -- don't deliver a second identical response.  if (networkResponse.notModified && request.hasHadResponseDelivered()) {  request.finish("not-modified");  continue;  }  // Parse the response here on the worker thread.  Response<?> response = request.parseNetworkResponse(networkResponse);  request.addMarker("network-parse-complete");  // Write to cache if applicable.  // TODO: Only update cache metadata instead of entire record for 304s.  if (request.shouldCache() && response.cacheEntry != null) {  mCache.put(request.getCacheKey(), response.cacheEntry);  request.addMarker("network-cache-written");  }  // Post the response back.  request.markDelivered();  mDelivery.postResponse(request, response);  } catch (VolleyError volleyError) {  parseAndDeliverNetworkError(request, volleyError);  } catch (Exception e) {  VolleyLog.e(e, "Unhandled exception %s", e.toString());  mDelivery.postError(request, new VolleyError(e));  }  }  }  
}  

同样地,在第7行我们看到了类似的while(true)循环,说明网络请求线程也是在不断运行的。在第28行的时候会调用Network的performRequest()方法来去发送网络请求,而Network是一个接口,这里具体的实现是BasicNetwork,我们来看下它的 performRequest()方法,如下所示:

public class BasicNetwork implements Network {  ……  @Override  public NetworkResponse performRequest(Request<?> request) throws VolleyError {  long requestStart = SystemClock.elapsedRealtime();  while (true) {  HttpResponse httpResponse = null;  byte[] responseContents = null;  Map<String, String> responseHeaders = new HashMap<String, String>();  try {  // Gather headers.  Map<String, String> headers = new HashMap<String, String>();  addCacheHeaders(headers, request.getCacheEntry());  httpResponse = mHttpStack.performRequest(request, headers);  StatusLine statusLine = httpResponse.getStatusLine();  int statusCode = statusLine.getStatusCode();  responseHeaders = convertHeaders(httpResponse.getAllHeaders());  // Handle cache validation.  if (statusCode == HttpStatus.SC_NOT_MODIFIED) {  return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED,  request.getCacheEntry() == null ? null : request.getCacheEntry().data,  responseHeaders, true);  }  // Some responses such as 204s do not have content.  We must check.  if (httpResponse.getEntity() != null) {  responseContents = entityToBytes(httpResponse.getEntity());  } else {  // Add 0 byte response as a way of honestly representing a  // no-content request.  responseContents = new byte[0];  }  // if the request is slow, log it.  long requestLifetime = SystemClock.elapsedRealtime() - requestStart;  logSlowRequests(requestLifetime, request, responseContents, statusLine);  if (statusCode < 200 || statusCode > 299) {  throw new IOException();  }  return new NetworkResponse(statusCode, responseContents, responseHeaders, false);  } catch (Exception e) {  ……  }  }  }  
}  

这段方法中大多都是一些网络请求细节方面的东西,我们并不需要太多关心,需要注意的是在第14行调用了HttpStack的performRequest()方法,这里的HttpStack就是在一开始调用newRequestQueue()方法是创建的实例,默认情况下如果系统版本号大于9就创建的HurlStack对象,否则创建HttpClientStack对象。前面已经说过,这两个对象的内部实际就是分别使用HttpURLConnection和HttpClient来发送网络请求的,我们就不再跟进去阅读了,之后会将服务器返回的数据组装成一个NetworkResponse对象进行返回。


在NetworkDispatcher中收到了NetworkResponse这个返回值后又会调用Request的parseNetworkResponse()方法来解析NetworkResponse中的数据,以及将数据写入到缓存,这个方法的实现是交给Request的子类来完成的,因为不同种类的Request解析的方式也肯定不同。还记得我们在上一篇文章中学习的自定义Request的方式吗?其中parseNetworkResponse()这个方法就是必须要重写的。


在解析完了NetworkResponse中的数据之后,又会调用ExecutorDelivery的postResponse()方法来回调解析出的数据,代码如下所示:

public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {  request.markDelivered();  request.addMarker("post-response");  mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));  
}  
其中,在mResponsePoster的execute()方法中传入了一个ResponseDeliveryRunnable对象,就可以保证该对象中的run()方法就是在主线程当中运行的了,我们看下run()方法中的代码是什么样的:

private class ResponseDeliveryRunnable implements Runnable {  private final Request mRequest;  private final Response mResponse;  private final Runnable mRunnable;  public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) {  mRequest = request;  mResponse = response;  mRunnable = runnable;  }  @SuppressWarnings("unchecked")  @Override  public void run() {  // If this request has canceled, finish it and don't deliver.  if (mRequest.isCanceled()) {  mRequest.finish("canceled-at-delivery");  return;  }  // Deliver a normal response or error, depending.  if (mResponse.isSuccess()) {  mRequest.deliverResponse(mResponse.result);  } else {  mRequest.deliverError(mResponse.error);  }  // If this is an intermediate response, add a marker, otherwise we're done  // and the request can be finished.  if (mResponse.intermediate) {  mRequest.addMarker("intermediate-response");  } else {  mRequest.finish("done");  }  // If we have been provided a post-delivery runnable, run it.  if (mRunnable != null) {  mRunnable.run();  }  }  
}  

代码虽然不多,但我们并不需要行行阅读,抓住重点看即可。其中在第22行调用了Request的deliverResponse()方法,有没有感觉很熟悉?没错,这个就是我们在自定义Request时需要重写的另外一个方法,每一条网络请求的响应都是回调到这个方法中,最后我们再在这个方法中将响应的数据回调到Response.Listener的onResponse()方法中就可以了。


好了,到这里我们就把Volley的完整执行流程全部梳理了一遍,你是不是已经感觉已经很清晰了呢?对了,还记得在文章一开始的那张流程图吗,刚才还不能理解,现在我们再来重新看下这张图:

Android Volley 带你从源码的角度理解Volley



其中蓝色部分代表主线程,绿色部分代表缓存线程,橙色部分代表网络线程。我们在主线程中调用RequestQueue的add()方法来添加一条网络请求,这条请求会先被加入到缓存队列当中,如果发现可以找到相应的缓存结果就直接读取缓存并解析,然后回调给主线程。如果在缓存中没有找到结果,则将这条请求加入到网络请求队列中,然后处理发送HTTP请求,解析响应结果,写入缓存,并回调主线程。


怎么样,是不是感觉现在理解这张图已经变得轻松简单了?好了,到此为止我们就把Volley的用法和源码全部学习完了,相信你已经对Volley非常熟悉并可以将它应用到实际项目当中了,那么Volley完全解析系列的文章到此结束,感谢大家有耐心看到最后。


关注我的技术公众号,每天都有优质技术文章推送。关注我的娱乐公众号,工作、学习累了的时候放松一下自己。

微信扫一扫下方二维码即可关注:  

Android Volley 带你从源码的角度理解Volley




  相关解决方案