当前位置: 代码迷 >> 综合 >> LA 3218 Find the Border PSLG *
  详细解决方案

LA 3218 Find the Border PSLG *

热度:30   发布时间:2023-09-23 03:53:02.0

题目地址:https://vjudge.net/problem/UVALive-3218

LRJ的算法看半天才懂,实际上是先遍历所有区域,然后其中一个面积为负的就是外轮廓

LA 3218 Find the Border PSLG *

其中边的遍历方向类似上图所示,只有外轮廓面积为负数

#include <bits/stdc++.h>
using namespace std;
#define REP(i,a,b)  for(int i=a;i<(int)(b);++i)
#define REPD(i,a,b) for(int i=a;i>(int)(b);--i)
const double PI=acos(-1);
const double EPS=1e-8;   
int dcmp(double x){if(fabs(x)<EPS) return 0;return x > 0 ? 1 : -1;
}
struct Point{double x,y;Point(double x=0,double y=0):x(x),y(y){}
};
typedef Point Vector;
bool operator < (const Point& p1, const Point& p2){ return dcmp(p1.x-p2.x)<0 || (dcmp(p1.x-p2.x)==0 && dcmp(p1.y-p2.y)<0) ;}
bool operator == (const Point& a, const Point& b) {	return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0; }
Vector operator / (const Point& A, double x){ return Vector{A.x/x, A.y/x};}
Vector operator * (const Vector& A, double x){ return Vector{A.x*x, A.y*x};}
Vector operator - (const Vector& A, const Vector& B){ return Vector{A.x-B.x,A.y-B.y};}
Vector operator + (const Point& A, const Vector& v){ return Point{A.x+v.x,A.y+v.y};}
Vector Rotate(const Point& p,double ang){ return Vector{p.x*cos(ang)-p.y*sin(ang),p.x*sin(ang)+p.y*cos(ang)};}
double Cross(const Vector& A, const Vector& B){ return A.x*B.y-A.y*B.x;}
double Dot(Vector A, Vector B){ return A.x*B.x+A.y*B.y;}
double Length(Vector v){ return sqrt(fabs(Dot(v,v)));}
Vector Unit(Vector v){ return v/Length(v);}
double Angle(Vector v) { return atan2(v.y, v.x); }const int maxn=100+5;
Point P[maxn],V[maxn*maxn*2];
int n,Vnum;
struct Edge{int from,to; double ang;
};
vector<Edge> edges;
vector<vector<int> > G(maxn*maxn);
vector<vector<double> > dist(maxn*maxn);
typedef	 vector<Point> Polygon;
vector<Polygon> faces;
int Prev[maxn*maxn*2];
double Area[maxn];
bool vis[maxn*maxn*2];bool ProperInter(const Point& a1, const Point& a2, const Point& b1, const Point& b2){double c1=Cross(a2-a1, b1-a1), c2=Cross(a2-a1, b2-a1),c3=Cross(b2-b1, a1-b1), c4=Cross(b2-b1, a2-b1);return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
}
Point GetInterP(const Point& P, const Vector& v, const Point& Q, const Vector& w){Vector u = P-Q;double t = Cross(w, u) / Cross(v, w);return P+v*t;
}
void AddEdge(int from, int to){edges.push_back(Edge{from, to, Angle(V[to]-V[from])});    //每条边都有反向边,这样每条边的左边可以确定区域edges.push_back(Edge{to, from, Angle(V[from]-V[to])});int m=edges.size();G[from].push_back(m-2);G[to].push_back(m-1);
}
int ID(Point p){return lower_bound(V, V+Vnum, p)-V;
}
Polygon simplifly(const Polygon& poly){Polygon ans;int m=poly.size();REP(i,0,m){Point a=poly[(i-1+m)%m];Point b=poly[i];Point c=poly[(i+1)%m];if(dcmp(Cross(a-b, c-b))!=0) ans.push_back(b);}return ans;
}
double PolygonArae(const Polygon& poly){double x=0;REP(i,1,poly.size()-1) x+=Cross(poly[i]-poly[0], poly[i+1]-poly[0]);return x/2;
}
void PSLG(){REP(u,0,Vnum){int m=G[u].size();REP(i,0,m) REP(j,i+1,m) if(edges[G[u][i]].ang>edges[G[u][j]].ang) swap(G[u][i], G[u][j]);REP(i,0,m) Prev[G[u][(i+1)%m]]=G[u][i];     //i顺时针转的下一条是prev[i];}Polygon poly; faces.clear();memset(vis,false,sizeof(vis));REP(u,0,Vnum) REP(i,0,G[u].size()) {int e=G[u][i];if(!vis[e]){poly.clear();for(;;){vis[e]=true; poly.push_back(V[edges[e].from]);e=Prev[e^1];         //反向边的顺时针转遇到的第一条边,所以找到的外轮廓是顺时针的,面积为负if(e==G[u][i]) break;assert(vis[e]==false);  //不可能走一半发现边走过了,那就不是连通图了} faces.push_back(poly);}}REP(i,0,faces.size()) Area[i]=PolygonArae(faces[i]);
}
void Solve(){memcpy(V,P,sizeof(Point)*n);  //V中保存去重的所有点Vnum=n;P[n]=P[0];REP(i,0,n) dist[i].clear();   // dist[i][j]是第i条线段上的第j个点离起点(P[i])的距离REP(i,0,n) REP(j,i+1,n) if(ProperInter(P[i], P[i+1], P[j], P[j+1])){Point pi=GetInterP(P[i], P[i+1]-P[i], P[j], P[j+1]-P[j]);  V[Vnum++]=pi;          //求出所有线段的交点dist[i].push_back(Length(pi-P[i]));dist[j].push_back(Length(pi-P[j]));}sort(V, V+Vnum);Vnum=unique(V, V+Vnum)-V;   //去重edges.clear();REP(i,0,Vnum) G[i].clear();REP(i,0,n) {Vector v=P[i+1]-P[i];double len=Length(v);dist[i].push_back(0);    //两个端点放入dist[i].push_back(len);sort(dist[i].begin(), dist[i].end());REP(j,0,dist[i].size()-1){Point a=P[i]+v*(dist[i][j]/len);Point b=P[i]+v*(dist[i][j+1]/len);if(a==b) continue;AddEdge(ID(a), ID(b));            //把所有线段包括有交点分割新产生线段存入}}PSLG();   //遍历Polygon poly;REP(i,0,faces.size())if(Area[i]<0) {      // 对于连通图,惟一一个面积小于零的面是无限面poly=faces[i];  reverse(poly.begin(), poly.end());  // 对于内部区域来说,无限面多边形的各个顶点是顺时针的break;}poly=simplifly(poly);   //除去共线的点int ans=poly.size();printf("%d\n", ans);int start=0;REP(i,0,ans) if(poly[i] < poly[start]) start=i;  //找出左下的点REP(i,start,ans) printf("%.4lf %.4lf\n", poly[i].x, poly[i].y);REP(i,0,start) printf("%.4lf %.4lf\n", poly[i].x, poly[i].y);
}
int main(int argc, char const *argv[])
{// freopen("input.in","r",stdin); while(scanf("%d",&n)==1){REP(i,0,n) scanf("%lf%lf",&P[i].x,&P[i].y);Solve();}return 0;
}



下面是自己写的卷包裹法:

tips:求右拐最厉害的边可以借助反向边的逆时针第一条边

#include <bits/stdc++.h>
using namespace std;
#define REP(i,a,b)  for(int i=a;i<(int)(b);++i)
#define REPD(i,a,b) for(int i=a;i>(int)(b);--i)
const double PI=acos(-1);
const double EPS=1e-8;   
int dcmp(double x){if(fabs(x)<EPS) return 0;return x > 0 ? 1 : -1;
}
struct Point{double x,y;Point(double x=0,double y=0):x(x),y(y){}
};
typedef Point Vector;
bool operator < (const Point& p1, const Point& p2){ return dcmp(p1.x-p2.x)<0 || (dcmp(p1.x-p2.x)==0 && dcmp(p1.y-p2.y)<0) ;}
bool operator == (const Point& a, const Point& b) {	return dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0; }
Vector operator / (const Point& A, double x){ return Vector{A.x/x, A.y/x};}
Vector operator * (const Vector& A, double x){ return Vector{A.x*x, A.y*x};}
Vector operator - (const Vector& A, const Vector& B){ return Vector{A.x-B.x,A.y-B.y};}
Vector operator + (const Point& A, const Vector& v){ return Point{A.x+v.x,A.y+v.y};}
Vector Rotate(const Point& p,double ang){ return Vector{p.x*cos(ang)-p.y*sin(ang),p.x*sin(ang)+p.y*cos(ang)};}
double Cross(const Vector& A, const Vector& B){ return A.x*B.y-A.y*B.x;}
double Dot(Vector A, Vector B){ return A.x*B.x+A.y*B.y;}
double Length(Vector v){ return sqrt(fabs(Dot(v,v)));}
Vector Unit(Vector v){ return v/Length(v);}
double Angle(Vector v) { return atan2(v.y, v.x); }const int maxn=100+5,maxe=10000+5;
int n,vCnt;
Point P[maxn],V[maxe];
struct Edge{int from,to; double ang;
};
vector<Edge> edges;
bool cmp(int i, int j){return edges[i].ang < edges[j].ang;
}
typedef vector<Point> Polygon;
vector<vector<int> > Seg(maxe);
vector<vector<double> > dist(maxn);
int Next[maxe*2];
bool SegIntSeg(const Point& a, const Point& b, const Point& c, const Point& d){double c1=Cross(b-a, c-a), c2=Cross(b-a, d-a),c3=Cross(d-c, a-c), c4=Cross(d-c, b-c);return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
}
Point IntPoint(const Point& P, const Vector& v, const Point& Q, const Vector& w){Vector u=P-Q;double t=Cross(u, v)/Cross(w, v);return Q+w*t;
}
void AddEdge(int from, int to){edges.push_back(Edge{from, to, Angle(V[to]-V[from])});edges.push_back(Edge{to, from, Angle(V[from]-V[to])});int m=edges.size();Seg[from].push_back(m-2);Seg[to].push_back(m-1);
}
int ID(const Point& p){return lower_bound(V, V+vCnt, p) - V;
}
Polygon Simplify(const Polygon& poly){Polygon ans;int m=poly.size();REP(i,0,m) {Point a=poly[i], b=poly[(i+1)%m], c=poly[(i+2)%m];if(dcmp(Cross(b-a, c-a))!=0) ans.push_back(a); }return ans;
}
void GiftWrapping(){int st=0;REP(i,1,vCnt) if(V[i] < V[st]) st=i;Polygon poly;int e=Seg[st][0];do{poly.push_back(V[edges[e].from]);e=Next[e^1];   //反向边逆时针第一条}while(edges[e].from!=st);poly=Simplify(poly);int m=poly.size();printf("%d\n", m);REP(i,0,m) printf("%.4lf %.4lf\n", poly[i].x, poly[i].y);
}
void Solve(){REP(i,0,n) { dist[i].clear(); V[i]=P[i]; }vCnt=n;P[n]=P[0];REP(i,0,n) REP(j,i+1,n) if(SegIntSeg(P[i], P[i+1], P[j], P[j+1])) {Point p=IntPoint(P[i], P[i+1]-P[i], P[j], P[j+1]-P[j]);V[vCnt++]=p;dist[i].push_back(Length(P[i]-p));dist[j].push_back(Length(P[j]-p));}sort(V, V+vCnt);vCnt=unique(V, V+vCnt)-V;REP(i,0,vCnt) Seg[i].clear(); edges.clear();REP(i,0,n) {Vector v=P[i+1]-P[i];double len=Length(v);dist[i].push_back(0);dist[i].push_back(len);sort(dist[i].begin(), dist[i].end());REP(j,1,dist[i].size()) {Point a=P[i]+v*(dist[i][j-1]/len);Point b=P[i]+v*(dist[i][j]/len);if(a==b) continue;AddEdge(ID(a), ID(b));}}REP(u,0,vCnt){sort(Seg[u].begin(), Seg[u].end(), cmp);int m=Seg[u].size();REP(i,0,m) Next[Seg[u][i]]=Seg[u][(i+1)%m];}GiftWrapping();
}int main(int argc, char const *argv[])
{// freopen("input.in","r",stdin);while(scanf("%d",&n)==1&&n) {REP(i,0,n) scanf("%lf%lf",&P[i].x, &P[i].y);Solve();}return 0;
}
// 1.求出所有交点,每个点连接的线段按极角序排
// 2.从左下开始遍历,逆时针开始遍历,每次遇到第一个点就往反向边逆时针转的的第一条走去,直到回到起点
/*
那么问题就是如何保存每个点的边:
1.首先交点肯定都要求出来保存在V[]中,去重
在求1的同时也要把所有线段求出来,并且线段的起点也要知道(用vector,Seg[a][i]保存a点相连的边,注意按极角排序),边的反向边也要容易得到(e^1方法得到)
要个数组保存边e逆时针转的第一条边所以:
vector<double> dist[]; dist[u]保存与u成直线的点 
edges保存所有边
G[u][i]保存u出发的在edges中的编号,且已经排序
prev[e]保存e逆时针转的第一条边
逆时针卷包裹的时候不会遇到已经遍历的边,所以不用vis判重
vector<Point> ans保存逆时针遍历的点,也要去重共线的点
*/


  相关解决方案