矩阵的行列式与克莱姆法则
- 1.行列式的引入
- 2.行列式
- 3.余子式与代数余子式
- 3.重要定理
- 4.主要公式
- 5.方阵的行列式
- 6.克莱姆法则
1.行列式的引入
用消元法解二元线性方程组
{a11x1+a12x2=b1,a21x1+a22x2=b2.\left\{\begin{array}{l}a_{11}x_1+a_{12}x_2=b_1,\\a_{21}x_1+a_{22}x_2=b_{2.}\end{array}\right.{
a11?x1?+a12?x2?=b1?,a21?x1?+a22?x2?=b2.??
为消去未知数x2x_2x2?,以a22a_{22}a22?与a12a_{12}a12?分别乘上列方程的两端,然后两个方程相减,得
(a11a22?a12a21)x1=b1a22?a12b2\left(a_{11}a_{22}-a_{12}a_{21}\right)x_1=b_1a_{22}-a_{12}b_2 (a11?a22??a12?a21?)x1?=b1?a22??a12?b2?
类似地,消去x1x_1x1?,得
(a11a22?a12a21)x2=b2a11?a21b1\left(a_{11}a_{22}-a_{12}a_{21}\right)x_2=b_2a_{11}-a_{21}b_1 (a11?a22??a12?a21?)x2?=b2?a11??a21?b1?
当(a11a22?a12a21)≠0\left(a_{11}a_{22}-a_{12}a_{21}\right)\neq0(a11?a22??a12?a21?)??=0时,求得方程组 (1)的解为
x1=b1a22?a12b2a11a22?a12a21,x2=b2a11?a21b1a11a22?a12a21.x_1=\frac{b_1a_{22}-a_{12}b_2}{a_{11}a_{22}-a_{12}a_{21}},x_2=\frac{b_2a_{11}-a_{21}b_1}{a_{11}a_{22}-a_{12}a_{21}}. x1?=a11?a22??a12?a21?b1?a22??a12?b2??,x2?=a11?a22??a12?a21?b2?a11??a21?b1??.
若记
D=∣a11a12a21a22∣,D1=∣b1a12b2a22∣,D2=∣a11b1a21b2∣D=\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix},\;D_1=\begin{vmatrix}b_1&a_{12}\\b_2&a_{22}\end{vmatrix},\;D_2=\begin{vmatrix}a_{11}&b_1\\a_{21}&b_2\end{vmatrix} D=∣∣∣∣?a11?a21??a12?a22??∣∣∣∣?,D1?=∣∣∣∣?b1?b2??a12?a22??∣∣∣∣?,D2?=∣∣∣∣?a11?a21??b1?b2??∣∣∣∣?
那么(2)式可写成
x1=D1D=∣b1a12b2a22∣∣a11a12a21a22∣,x2=D2D=∣a11b1a21b2∣∣a11a12a21a22∣x_1=\frac{D_1}D=\frac{\begin{vmatrix}b_1&a_{12}\\b_2&a_{22}\end{vmatrix}}{\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}},\;x_2=\frac{D_2}D=\frac{\begin{vmatrix}a_{11}&b_1\\a_{21}&b_2\end{vmatrix}}{\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}} x1?=DD1??=∣∣∣∣?a11?a21??a12?a22??∣∣∣∣?∣∣∣∣?b1?b2??a12?a22??∣∣∣∣??,x2?=DD2??=∣∣∣∣?a11?a21??a12?a22??∣∣∣∣?∣∣∣∣?a11?a21??b1?b2??∣∣∣∣??
2.行列式
1.概念:不同行不同列元素乘积的代数和(共n!n!n!项)
?
nnn阶行列式
∣a11a12?a1na21a22?a2n????an1an2?ann∣\begin{vmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&\ddots&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{vmatrix} ∣∣∣∣∣∣∣∣∣?a11?a21??an1??a12?a22??an2???????a1n?a2n??ann??∣∣∣∣∣∣∣∣∣?
式所有取自不同行不同列的nnn个元素的乘积
a1j1a2j2?anjna_{1j_1}a_{2j_2}\cdots a_{nj_n}a1j1??a2j2???anjn??
的代数和,这里j1j2?jnj_1j_2\cdots j_nj1?j2??jn?是1,2,?,n1,2,\cdots,n1,2,?,n的一个排列。当j1j2?jnj_1j_2\cdots j_nj1?j2??jn?是偶排列时,该项的前面带正号;当j1j2?jnj_1j_2\cdots j_nj1?j2??jn?是奇排列时,该项的前面带负号,即
∣a11a12?a1na21a22?a2n????an1an2?ann∣=∑j1j2?jn(?1)τ(j1j2?jn)a1j1a2j2?anjn\begin{vmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&\ddots&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{vmatrix}=\sum_{j_1j_2\cdots j_n}{(-1)}^{\tau(j_1j_2\cdots j_n)}a_{1j_1}a_{2j_2}\cdots a_{nj_n} ∣∣∣∣∣∣∣∣∣?a11?a21??an1??a12?a22??an2???????a1n?a2n??ann??∣∣∣∣∣∣∣∣∣?=j1?j2??jn?∑?(?1)τ(j1?j2??jn?)a1j1??a2j2???anjn??
这里∑j1j2?jn\sum_{j_1j_2\cdots j_n}∑j1?j2??jn??表示对所有nnn阶行列式的完全展开式
?
一个排列中,如果一个大的数排在小的数之前,就称这两个数构成一个逆序。一个排列的逆序总数称为这个排列的逆序数。用τ(j1j2?jn){\tau(j_1j_2\cdots j_n)}τ(j1?j2??jn?)表示j1j2?jnj_1j_2\cdots j_nj1?j2??jn?的逆序数。
?
2.性质
- 经转置行列式的值不变,即∣AT∣=∣A∣\left|A^T\right|=\left|A\right|∣∣?AT∣∣?=∣A∣
- 某行有公因数kkk,可以把kkk提到行列式外.特别地,某行元素全为0,则行列式的值为0.
- 两行互换行列式变号.特别地,两行相等,行列式值为0;两行成比例,行列式值为0.
- 某行所有元素都是两个数的和,则可以写成两个行列式之和.
- 某行的kkk倍加至另一行,行列式的值不变.
3.二阶、三阶行列式
∣abcd∣=ad?bc\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc∣∣∣∣?ac?bd?∣∣∣∣?=ad?bc
∣a1a2a3b1b2b3c1c2c3∣=a1b2c3+a2b3c1+a3b1c2?a3b2c1?a2b1c3?a1b3c2\begin{vmatrix}a_1&a_2&a_3\\b_1&b_2&b_3\\c_1&c_2&c_3\end{vmatrix}=a_1b_2c_3+a_2b_3c_1+a_3b_1c_2-a_3b_2c_1-a_2b_1c_3-a_1b_3c_2∣∣∣∣∣∣?a1?b1?c1??a2?b2?c2??a3?b3?c3??∣∣∣∣∣∣?=a1?b2?c3?+a2?b3?c1?+a3?b1?c2??a3?b2?c1??a2?b1?c3??a1?b3?c2?
3.余子式与代数余子式
在nnn阶行列式
D=∣a11a12?a1na21a22?a2n???an1an2?ann∣D=\begin{vmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{vmatrix} D=∣∣∣∣∣∣∣∣∣?a11?a21??an1??a12?a22??an2??????a1n?a2n??ann??∣∣∣∣∣∣∣∣∣?
中划去元素aija_{ij}aij?所在的第iii行、第jjj列,由剩下的元素按原来的排法构成一个n?1n-1n?1阶行列式
∣a11?a1,j?1a1,j+1?a1n????ai?1,1?ai?1,j?1ai?1,j+1?ai?1,nai?1,1?ai+1,j?1ai+1,j+1?ai+1,n????an1?an,j?1an,j+1?ann∣\begin{vmatrix}a_{11}&\cdots&a_{1,j-1}&a_{1,j+1}&\cdots&a_{1n}\\\vdots&&\vdots&\vdots&&\vdots\\a_{i-1,1}&\cdots&a_{i-1,j-1}&a_{i-1,j+1}&\cdots&a_{i-1,n}\\a_{i-1,1}&\cdots&a_{i+1,j-1}&a_{i+1,j+1}&\cdots&a_{i+1,n}\\\vdots&&\vdots&\vdots&&\vdots\\a_{n1}&\cdots&a_{n,j-1}&a_{n,j+1}&\cdots&a_{nn}\end{vmatrix} ∣∣∣∣∣∣∣∣∣∣∣∣∣∣?a11??ai?1,1?ai?1,1??an1???????a1,j?1??ai?1,j?1?ai+1,j?1??an,j?1??a1,j+1??ai?1,j+1?ai+1,j+1??an,j+1???????a1n??ai?1,n?ai+1,n??ann??∣∣∣∣∣∣∣∣∣∣∣∣∣∣?
称为aija_{ij}aij?的余子式,记为MijM_{ij}Mij?;称(?1)i+jMij{(-1)}^{i+j}M_{ij}(?1)i+jMij?为aija_{ij}aij?的代数余子式,记为AijA_{ij}Aij?,即
Aij=(?1)i+jMijA_{ij}={(-1)}^{i+j}M_{ij}Aij?=(?1)i+jMij?
3.重要定理
定理1:行列式按第kkk行的展开公式
在nnn阶行列式
D=∣a11a12?a1na21a22?a2n???an1an2?ann∣D=\begin{vmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{vmatrix} D=∣∣∣∣∣∣∣∣∣?a11?a21??an1??a12?a22??an2??????a1n?a2n??ann??∣∣∣∣∣∣∣∣∣?
等于它的任意一行的所有元素与它们各自对应的代数余子式的乘积之和,即
D=ak1Ak1+ak2Ak2+?+aknAkn(k=1,2,?,n)D=a_{k1}A_{k1}+a_{k2}A_{k2}+\cdots+a_{kn}A_{kn}(k=1,2,\cdots,n) D=ak1?Ak1?+ak2?Ak2?+?+akn?Akn?(k=1,2,?,n)
?
定理2:行列式按第kkk列的展开公式
nnn阶行列式DDD等于它的任意一列的所有元素与它们各自对应的代数余子式的乘积之和,即
D=a1kA1k+a2kA2k+?+ankAnk(k=1,2,?,n)D=a_{1k}A_{1k}+a_{2k}A_{2k}+\cdots+a_{nk}A_{nk}(k=1,2,\cdots,n) D=a1k?A1k?+a2k?A2k?+?+ank?Ank?(k=1,2,?,n)
?
定理3
在nnn阶行列式
D=∣a11a12?a1na21a22?a2n???an1an2?ann∣D=\begin{vmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{vmatrix} D=∣∣∣∣∣∣∣∣∣?a11?a21??an1??a12?a22??an2??????a1n?a2n??ann??∣∣∣∣∣∣∣∣∣?
元素aija_{ij}aij?的代数余子式AijA_{ij}Aij?,当i≠k(i,k=1,2,?,n)i\neq k(i,k=1,2,\cdots,n)i??=k(i,k=1,2,?,n)时,有
ak1Ak1+ak2Ak2+?+aknAkn=0a_{k1}A_{k1}+a_{k2}A_{k2}+\cdots+a_{kn}A_{kn}=0ak1?Ak1?+ak2?Ak2?+?+akn?Akn?=0
当j≠k(j,k=1,2,?,n)j\neq k(j,k=1,2,\cdots,n)j??=k(j,k=1,2,?,n)时,有
a1jA1k+a2jA2k+?+anjAnk=0a_{1j}A_{1k}+a_{2j}A_{2k}+\cdots+a_{nj}A_{nk}=0a1j?A1k?+a2j?A2k?+?+anj?Ank?=0
4.主要公式
(1)上(下)三角行列式的值等于主对角线元素的乘积
D=∣a11a12?a1na22?a2n??ann∣=∣a11a21a22??an1an2?ann∣=a11a22?annD=\begin{vmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\&a_{22}&\cdots&a_{2n}\\&&\ddots&\vdots\\&&&a_{nn}\end{vmatrix}=\begin{vmatrix}a_{11}&&&\\a_{21}&a_{22}&&\\&\vdots&\ddots&\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{vmatrix}=a_{11}a_{22}\cdots a_{nn} D=∣∣∣∣∣∣∣∣∣?a11??a12?a22??????a1n?a2n??ann??∣∣∣∣∣∣∣∣∣?=∣∣∣∣∣∣∣∣∣?a11?a21?an1??a22??an2?????ann??∣∣∣∣∣∣∣∣∣?=a11?a22??ann?
(2)关于副对角线的行列式
D=∣a11a12?a1,n?1a1na21a22?a2,n?10????an10?00∣=∣0?0a1n0a22a2,n?1a2n????an1?an,n?1ann∣=(?1)n(n?1)2a1na2,n?1?an1D=\begin{vmatrix}a_{11}&a_{12}&\cdots&a_{1,n-1}&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2,n-1}&0\\\vdots&\vdots&&\vdots&\vdots\\a_{n1}&0&\cdots&0&0\end{vmatrix}=\begin{vmatrix}0&\cdots&0&a_{1n}\\0&a_{22}&a_{2,n-1}&a_{2n}\\\vdots&\vdots&\vdots&\vdots\\a_{n1}&\cdots&a_{n,n-1}&a_{nn}\end{vmatrix}={(-1)}^\frac{n(n-1)}2a_{1n}a_{2,n-1}\cdots a_{n1} D=∣∣∣∣∣∣∣∣∣?a11?a21??an1??a12?a22??0?????a1,n?1?a2,n?1??0?a1n?0?0?∣∣∣∣∣∣∣∣∣?=∣∣∣∣∣∣∣∣∣?00?an1???a22????0a2,n?1??an,n?1??a1n?a2n??ann??∣∣∣∣∣∣∣∣∣?=(?1)2n(n?1)?a1n?a2,n?1??an1?
(3)拉普拉斯行列式
∣A?OB∣=∣AO?B∣=∣A∣?∣B∣\begin{vmatrix}A&\ast\\O&B\end{vmatrix}=\begin{vmatrix}\mathrm A&O\\\ast&\mathrm B\end{vmatrix}=\left|A\right|\cdot\left|B\right| ∣∣∣∣?AO??B?∣∣∣∣?=∣∣∣∣?A??OB?∣∣∣∣?=∣A∣?∣B∣
∣OAB?∣=∣?ABO∣=(?1)mn∣A∣?∣B∣\begin{vmatrix}\mathrm O&A\\\mathrm B&\ast\end{vmatrix}=\begin{vmatrix}\ast&A\\\mathrm B&\mathrm O\end{vmatrix}={(-1)}^{mn}{\vert\mathrm A\vert}\cdot{\vert\mathrm B\vert} ∣∣∣∣?OB?A??∣∣∣∣?=∣∣∣∣??B?AO?∣∣∣∣?=(?1)mn∣A∣?∣B∣
(4)范德蒙德行列式
∣11?1x1x2?xnx12x22?xn2???x1n?1x2n?1?xnn?1∣=∏1?j?i?n(xi?xj)\begin{vmatrix}1&1&\cdots&1\\x_1&x_2&\cdots&x_n\\x_1^2&x_2^2&\cdots&x_n^2\\\vdots&\vdots&&\vdots\\x_1^{n-1}&x_2^{n-1}&\cdots&x_n^{n-1}\end{vmatrix}=\prod_{1\leqslant j\leqslant i\leqslant n}(x_i-x_{j)} ∣∣∣∣∣∣∣∣∣∣∣?1x1?x12??x1n?1??1x2?x22??x2n?1???????1xn?xn2??xnn?1??∣∣∣∣∣∣∣∣∣∣∣?=1?j?i?n∏?(xi??xj)?
5.方阵的行列式
(1)∣AT∣=∣A∣(2)∣kA∣=kn∣A∣(3)∣AB∣=∣A∣∣B∣(4)∣A?∣=∣A∣n?1(5)∣A?1∣=∣A∣?1(A为可逆矩阵)(6)∣A∣=∏λii=1n(λi是A的特征值)(7)∣A∣=∣B∣(A与B相似)(1)\left|A^T\right|=\left|A\right|\\(2)\left|kA\right|=k^n\left|A\right|\\(3)\left|AB\right|=\left|A\right|\left|B\right|\\(4)\left|A^\ast\right|=\left|A\right|^{n-1}\\(5)\left|A^{-1}\right|=\left|A\right|^{-1}(A\mathrm{为可逆矩阵})\\(6)\left|A\right|=\overset n{\underset{i=1}{\prod\lambda_i}}(\lambda_i是A\mathrm{的特征值})\\(7)\left|A\right|=\left|B\right|(A与B\mathrm{相似})(1)∣∣?AT∣∣?=∣A∣(2)∣kA∣=kn∣A∣(3)∣AB∣=∣A∣∣B∣(4)∣A?∣=∣A∣n?1(5)∣∣?A?1∣∣?=∣A∣?1(A为可逆矩阵)(6)∣A∣=i=1∏λi??n?(λi?是A的特征值)(7)∣A∣=∣B∣(A与B相似)
6.克莱姆法则
若nnn个方程nnn个未知数的线性方程组
{a11x1+a12x2+?+a1nxn=b1a21x1+a22x2+?+a2nxn=b2???an1x1+an2x2+?+annxn=bn\left\{\begin{array}{l}a_{11}x_1+a_{12}x2+\cdots+a_{1n}x_n=b_1\\a_{21}x_1+a_{22}x2+\cdots+a_{2n}x_n=b_2\\\;\;\;\;\vdots\;\;\;\;\;\;\;\;\;\vdots\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\vdots\\a_{n1}x_1+a_{n2}x2+\cdots+a_{nn}x_n=b_n\end{array}\right. ??????????a11?x1?+a12?x2+?+a1n?xn?=b1?a21?x1?+a22?x2+?+a2n?xn?=b2????an1?x1?+an2?x2+?+ann?xn?=bn??
的系数行列式
D=∣a11a12?a1na21a22?a2n???an1an2?ann∣≠0D=\begin{vmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{vmatrix}\neq0 D=∣∣∣∣∣∣∣∣∣?a11?a21??an1??a12?a22??an2??????a1n?a2n??ann??∣∣∣∣∣∣∣∣∣???=0
则方程组有唯一解
x1=D1D,x2=D2D,?,xn=DnDx_1=\frac{D_1}D,x_2=\frac{D_2}D,\cdots,x_n=\frac{D_n}D x1?=DD1??,x2?=DD2??,?,xn?=DDn??
?
定理
非齐次线性方程组(Ax=b\boldsymbol A\boldsymbol x=bAx=b)
- 非齐次线性方程组的系数行列式D≠0D\neq0D??=0,则非齐次线性方程组一定有解,解是唯一的。
- 如果非齐次线性方程组无解或者有两个不同的解,则他的系数行列式必为0
齐次线性方程组(Ax=0\boldsymbol A\boldsymbol x=0Ax=0)
- 如果齐次线性方程组的系数行列式D≠0D\neq0D??=0,则齐次线性方程组没有非零解,即只有零解。
- 如果齐次线性方程组有非零解,则∣A∣=0\left|A\right|=0∣A∣=0.