这里写目录标题
- 1.行列式
- 2.矩阵
- 3.向量
- 4.线性方程组
- 5.矩阵的特征值和特征向量
- 6.二次型
1.行列式
1.行列式按行(列)展开定理
(1) 设A=(aij)n×nA = ( a_{ {ij}} )_{n \times n}A=(aij?)n×n?,则:ai1Aj1+ai2Aj2+?+ainAjn={∣A∣,i=j0,i≠ja_{i1}A_{j1} +a_{i2}A_{j2} + \cdots + a_{ {in}}A_{ {jn}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases}ai1?Aj1?+ai2?Aj2?+?+ain?Ajn?={ ∣A∣,i=j0,i??=j?
或a1iA1j+a2iA2j+?+aniAnj={∣A∣,i=j0,i≠ja_{1i}A_{1j} + a_{2i}A_{2j} + \cdots + a_{ {ni}}A_{ {nj}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases}a1i?A1j?+a2i?A2j?+?+ani?Anj?={ ∣A∣,i=j0,i??=j?即 AA?=A?A=∣A∣E,AA^{*} = A^{*}A = \left| A \right|E,AA?=A?A=∣A∣E,其中:A?=(A11A12…A1nA21A22…A2n…………An1An2…Ann)=(Aji)=(Aij)TA^{*} = \begin{pmatrix} A_{11} & A_{12} & \ldots & A_{1n} \\ A_{21} & A_{22} & \ldots & A_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ A_{n1} & A_{n2} & \ldots & A_{ {nn}} \\ \end{pmatrix} = (A_{ {ji}}) = {(A_{ {ij}})}^{T}A?=?????A11?A21?…An1??A12?A22?…An2??…………?A1n?A2n?…Ann???????=(Aji?)=(Aij?)T
Dn=∣11…1x1x2…xn…………x1n?1x2n?1…xnn?1∣=∏1≤j<i≤n(xi?xj)D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n - 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j})Dn?=∣∣∣∣∣∣∣∣?1x1?…x1n?1??1x2?…x2n?1??…………?1xn?…xnn?1??∣∣∣∣∣∣∣∣?=∏1≤j<i≤n?(xi??xj?)
(2) 设A,BA,BA,B为nnn阶方阵,则∣AB∣=∣A∣∣B∣=∣B∣∣A∣=∣BA∣\left| {AB} \right| = \left| A \right|\left| B \right| = \left| B \right|\left| A \right| = \left| {BA} \right|∣AB∣=∣A∣∣B∣=∣B∣∣A∣=∣BA∣,但∣A±B∣=∣A∣±∣B∣\left| A \pm B \right| = \left| A \right| \pm \left| B \right|∣A±B∣=∣A∣±∣B∣不一定成立。
(3) ∣kA∣=kn∣A∣\left| {kA} \right| = k^{n}\left| A \right|∣kA∣=kn∣A∣,AAA为nnn阶方阵。
(4) 设AAA为nnn阶方阵,∣AT∣=∣A∣;∣A?1∣=∣A∣?1|A^{T}| = |A|;|A^{- 1}| = |A|^{- 1}∣AT∣=∣A∣;∣A?1∣=∣A∣?1(若AAA可逆),∣A?∣=∣A∣n?1|A^{*}| = |A|^{n - 1}∣A?∣=∣A∣n?1
n≥2n \geq 2n≥2
(5) ∣AOOB∣=∣ACOB∣=∣AOCB∣=∣A∣∣B∣\left| \begin{matrix} & {A\quad O} \\ & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & {A\quad C} \\ & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & {A\quad O} \\ & {C\quad B} \\ \end{matrix} \right| =| A||B|∣∣∣∣??AOOB?∣∣∣∣?=∣∣∣∣??ACOB?∣∣∣∣?=∣∣∣∣??AOCB?∣∣∣∣?=∣A∣∣B∣
,A,BA,BA,B为方阵,但∣OAm×mBn×nO∣=(?1)mn∣A∣∣B∣\left| \begin{matrix} {O} & A_{m \times m} \\ B_{n \times n} & { O} \\ \end{matrix} \right| = ({- 1)}^{
{mn}}|A||B|∣∣∣∣?OBn×n??Am×m?O?∣∣∣∣?=(?1)mn∣A∣∣B∣ 。
(6) 范德蒙行列式Dn=∣11…1x1x2…xn…………x1n?1x2n1…xnn?1∣=∏1≤j<i≤n(xi?xj)D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j})Dn?=∣∣∣∣∣∣∣∣?1x1?…x1n?1??1x2?…x2n1??…………?1xn?…xnn?1??∣∣∣∣∣∣∣∣?=∏1≤j<i≤n?(xi??xj?)
设AAA是nnn阶方阵,λi(i=1,2?,n)\lambda_{i}(i = 1,2\cdots,n)λi?(i=1,2?,n)是AAA的nnn个特征值,则
∣A∣=∏i=1nλi|A| = \prod_{i = 1}^{n}\lambda_{i}∣A∣=∏i=1n?λi?
2.矩阵
矩阵:m×nm \times nm×n个数aija_{ {ij}}aij?排成mmm行nnn列的表格[a11a12?a1na21a22?a2n?????am1am2?amn]\begin{bmatrix} a_{11}\quad a_{12}\quad\cdots\quad a_{1n} \\ a_{21}\quad a_{22}\quad\cdots\quad a_{2n} \\ \quad\cdots\cdots\cdots\cdots\cdots \\ a_{m1}\quad a_{m2}\quad\cdots\quad a_{ {mn}} \\ \end{bmatrix}?????a11?a12??a1n?a21?a22??a2n??????am1?am2??amn??????? 称为矩阵,简记为AAA,或者(aij)m×n\left( a_{ {ij}} \right)_{m \times n}(aij?)m×n? 。若m=nm = nm=n,则称AAA是nnn阶矩阵或nnn阶方阵。
矩阵的线性运算
1.矩阵的加法
设A=(aij),B=(bij)A = (a_{ {ij}}),B = (b_{ {ij}})A=(aij?),B=(bij?)是两个m×nm \times nm×n矩阵,则m×nm \times nm×n 矩阵C=cij)=aij+bijC = c_{ {ij}}) = a_{ {ij}} + b_{ {ij}}C=cij?)=aij?+bij?称为矩阵AAA与BBB的和,记为A+B=CA + B = CA+B=C 。
2.矩阵的数乘
设A=(aij)A = (a_{ {ij}})A=(aij?)是m×nm \times nm×n矩阵,kkk是一个常数,则m×nm \times nm×n矩阵(kaij)(ka_{ {ij}})(kaij?)称为数kkk与矩阵AAA的数乘,记为kA{kA}kA。
3.矩阵的乘法
设A=(aij)A = (a_{ {ij}})A=(aij?)是m×nm \times nm×n矩阵,B=(bij)B = (b_{ {ij}})B=(bij?)是n×sn \times sn×s矩阵,那么m×sm \times sm×s矩阵C=(cij)C = (c_{ {ij}})C=(cij?),其中cij=ai1b1j+ai2b2j+?+ainbnj=∑k=1naikbkjc_{ {ij}} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ {in}}b_{ {nj}} = \sum_{k =1}^{n}{a_{ {ik}}b_{ {kj}}}cij?=ai1?b1j?+ai2?b2j?+?+ain?bnj?=∑k=1n?aik?bkj?称为AB{AB}AB的乘积,记为C=ABC = ABC=AB 。
4. AT\mathbf{A}^{\mathbf{T}}AT、A?1\mathbf{A}^{\mathbf{-1}}A?1、A?\mathbf{A}^{\mathbf{*}}A?三者之间的关系
(1) (AT)T=A,(AB)T=BTAT,(kA)T=kAT,(A±B)T=AT±BT{(A^{T})}^{T} = A,{(AB)}^{T} = B^{T}A^{T},{(kA)}^{T} = kA^{T},{(A \pm B)}^{T} = A^{T} \pm B^{T}(AT)T=A,(AB)T=BTAT,(kA)T=kAT,(A±B)T=AT±BT
(2) (A?1)?1=A,(AB)?1=B?1A?1,(kA)?1=1kA?1,\left( A^{- 1} \right)^{- 1} = A,\left( {AB} \right)^{- 1} = B^{- 1}A^{- 1},\left( {kA} \right)^{- 1} = \frac{1}{k}A^{- 1},(A?1)?1=A,(AB)?1=B?1A?1,(kA)?1=k1?A?1,
但 (A±B)?1=A?1±B?1{(A \pm B)}^{- 1} = A^{- 1} \pm B^{- 1}(A±B)?1=A?1±B?1不一定成立。
(3) (A?)?=∣A∣n?2A(n≥3)\left( A^{*} \right)^{*} = |A|^{n - 2}\ A\ \ (n \geq 3)(A?)?=∣A∣n?2 A (n≥3),(AB)?=B?A?,\left({AB} \right)^{*} = B^{*}A^{*},(AB)?=B?A?, (kA)?=kn?1A?(n≥2)\left( {kA} \right)^{*} = k^{n -1}A^{*}{\ \ }\left( n \geq 2 \right)(kA)?=kn?1A? (n≥2)
但(A±B)?=A?±B?\left( A \pm B \right)^{*} = A^{*} \pm B^{*}(A±B)?=A?±B?不一定成立。
(4) (A?1)T=(AT)?1,(A?1)?=(AA?)?1,(A?)T=(AT)?{(A^{- 1})}^{T} = {(A^{T})}^{- 1},\ \left( A^{- 1} \right)^{*} ={(AA^{*})}^{- 1},{(A^{*})}^{T} = \left( A^{T} \right)^{*}(A?1)T=(AT)?1, (A?1)?=(AA?)?1,(A?)T=(AT)?
5.有关A?\mathbf{A}^{\mathbf{*}}A?的结论
(1) AA?=A?A=∣A∣EAA^{*} = A^{*}A = |A|EAA?=A?A=∣A∣E
(2) ∣A?∣=∣A∣n?1(n≥2),(kA)?=kn?1A?,(A?)?=∣A∣n?2A(n≥3)|A^{*}| = |A|^{n - 1}\ (n \geq 2),\ \ \ \ {(kA)}^{*} = k^{n -1}A^{*},{ {\ \ }\left( A^{*} \right)}^{*} = |A|^{n - 2}A(n \geq 3)∣A?∣=∣A∣n?1 (n≥2), (kA)?=kn?1A?, (A?)?=∣A∣n?2A(n≥3)
(3) 若AAA可逆,则A?=∣A∣A?1,(A?)?=1∣A∣AA^{*} = |A|A^{- 1},{(A^{*})}^{*} = \frac{1}{|A|}AA?=∣A∣A?1,(A?)?=∣A∣1?A
(4) 若AAA为nnn阶方阵,则:
r(A?)={n,r(A)=n1,r(A)=n?10,r(A)<n?1r(A^*)=\begin{cases}n,\quad r(A)=n\\ 1,\quad r(A)=n-1\\ 0,\quad r(A)<n-1\end{cases}r(A?)=??????n,r(A)=n1,r(A)=n?10,r(A)<n?1?
6.有关A?1\mathbf{A}^{\mathbf{- 1}}A?1的结论
AAA可逆?AB=E;?∣A∣≠0;?r(A)=n;\Leftrightarrow AB = E; \Leftrightarrow |A| \neq 0; \Leftrightarrow r(A) = n;?AB=E;?∣A∣??=0;?r(A)=n;
?A\Leftrightarrow A?A可以表示为初等矩阵的乘积;?A;?Ax=0\Leftrightarrow A;\Leftrightarrow Ax = 0?A;?Ax=0。
7.有关矩阵秩的结论
(1) 秩r(A)r(A)r(A)=行秩=列秩;
(2) r(Am×n)≤min?(m,n);r(A_{m \times n}) \leq \min(m,n);r(Am×n?)≤min(m,n);
(3) A≠0?r(A)≥1A \neq 0 \Rightarrow r(A) \geq 1A??=0?r(A)≥1;
(4) r(A±B)≤r(A)+r(B);r(A \pm B) \leq r(A) + r(B);r(A±B)≤r(A)+r(B);
(5) 初等变换不改变矩阵的秩
(6) r(A)+r(B)?n≤r(AB)≤min?(r(A),r(B)),r(A) + r(B) - n \leq r(AB) \leq \min(r(A),r(B)),r(A)+r(B)?n≤r(AB)≤min(r(A),r(B)),特别若AB=OAB = OAB=O
则:r(A)+r(B)≤nr(A) + r(B) \leq nr(A)+r(B)≤n
(7) 若A?1A^{- 1}A?1存在?r(AB)=r(B);\Rightarrow r(AB) = r(B);?r(AB)=r(B); 若B?1B^{- 1}B?1存在
?r(AB)=r(A);\Rightarrow r(AB) = r(A);?r(AB)=r(A);
若r(Am×n)=n?r(AB)=r(B);r(A_{m \times n}) = n \Rightarrow r(AB) = r(B);r(Am×n?)=n?r(AB)=r(B); 若r(Am×s)=n?r(AB)=r(A)r(A_{m \times s}) = n\Rightarrow r(AB) = r\left( A \right)r(Am×s?)=n?r(AB)=r(A)。
(8) r(Am×s)=n?Ax=0r(A_{m \times s}) = n \Leftrightarrow Ax = 0r(Am×s?)=n?Ax=0只有零解
8.分块求逆公式
(AOOB)?1=(A?1OOB?1)\begin{pmatrix} A & O \\ O & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{-1} & O \\ O & B^{- 1} \\ \end{pmatrix}(AO?OB?)?1=(A?1O?OB?1?); (ACOB)?1=(A?1?A?1CB?1OB?1)\begin{pmatrix} A & C \\ O & B \\\end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}& - A^{- 1}CB^{- 1} \\ O & B^{- 1} \\ \end{pmatrix}(AO?CB?)?1=(A?1O??A?1CB?1B?1?);
(AOCB)?1=(A?1O?B?1CA?1B?1)\begin{pmatrix} A & O \\ C & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}&{O} \\ - B^{- 1}CA^{- 1} & B^{- 1} \\\end{pmatrix}(AC?OB?)?1=(A?1?B?1CA?1?OB?1?); (OABO)?1=(OB?1A?1O)\begin{pmatrix} O & A \\ B & O \\ \end{pmatrix}^{- 1} =\begin{pmatrix} O & B^{- 1} \\ A^{- 1} & O \\ \end{pmatrix}(OB?AO?)?1=(OA?1?B?1O?)
这里AAA,BBB均为可逆方阵。
3.向量
1.有关向量组的线性表示
(1)α1,α2,?,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1?,α2?,?,αs?线性相关?\Leftrightarrow?至少有一个向量可以用其余向量线性表示。
(2)α1,α2,?,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1?,α2?,?,αs?线性无关,α1,α2,?,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1?,α2?,?,αs?,β\betaβ线性相关?β\Leftrightarrow \beta?β可以由α1,α2,?,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1?,α2?,?,αs?唯一线性表示。
(3) β\betaβ可以由α1,α2,?,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1?,α2?,?,αs?线性表示
?r(α1,α2,?,αs)=r(α1,α2,?,αs,β)\Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta)?r(α1?,α2?,?,αs?)=r(α1?,α2?,?,αs?,β) 。
2.有关向量组的线性相关性
(1)部分相关,整体相关;整体无关,部分无关.
(2) ① nnn个nnn维向量
α1,α2?αn\alpha_{1},\alpha_{2}\cdots\alpha_{n}α1?,α2??αn?线性无关?∣[α1α2?αn]∣≠0\Leftrightarrow \left|\left\lbrack \alpha_{1}\alpha_{2}\cdots\alpha_{n} \right\rbrack \right| \neq0?∣[α1?α2??αn?]∣??=0, nnn个nnn维向量α1,α2?αn\alpha_{1},\alpha_{2}\cdots\alpha_{n}α1?,α2??αn?线性相关
?∣[α1,α2,?,αn]∣=0\Leftrightarrow |\lbrack\alpha_{1},\alpha_{2},\cdots,\alpha_{n}\rbrack| = 0?∣[α1?,α2?,?,αn?]∣=0
。
② n+1n + 1n+1个nnn维向量线性相关。
③ 若α1,α2?αS\alpha_{1},\alpha_{2}\cdots\alpha_{S}α1?,α2??αS?线性无关,则添加分量后仍线性无关;或一组向量线性相关,去掉某些分量后仍线性相关。
3.有关向量组的线性表示
(1) α1,α2,?,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1?,α2?,?,αs?线性相关?\Leftrightarrow?至少有一个向量可以用其余向量线性表示。
(2) α1,α2,?,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1?,α2?,?,αs?线性无关,α1,α2,?,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1?,α2?,?,αs?,β\betaβ线性相关?β\Leftrightarrow\beta?β 可以由α1,α2,?,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1?,α2?,?,αs?唯一线性表示。
(3) β\betaβ可以由α1,α2,?,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1?,α2?,?,αs?线性表示
?r(α1,α2,?,αs)=r(α1,α2,?,αs,β)\Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta)?r(α1?,α2?,?,αs?)=r(α1?,α2?,?,αs?,β)
4.向量组的秩与矩阵的秩之间的关系
设r(Am×n)=rr(A_{m \times n}) =rr(Am×n?)=r,则AAA的秩r(A)r(A)r(A)与AAA的行列向量组的线性相关性关系为:
(1) 若r(Am×n)=r=mr(A_{m \times n}) = r = mr(Am×n?)=r=m,则AAA的行向量组线性无关。
(2) 若r(Am×n)=r<mr(A_{m \times n}) = r < mr(Am×n?)=r<m,则AAA的行向量组线性相关。
(3) 若r(Am×n)=r=nr(A_{m \times n}) = r = nr(Am×n?)=r=n,则AAA的列向量组线性无关。
(4) 若r(Am×n)=r<nr(A_{m \times n}) = r < nr(Am×n?)=r<n,则AAA的列向量组线性相关。
5.n\mathbf{n}n维向量空间的基变换公式及过渡矩阵
若α1,α2,?,αn\alpha_{1},\alpha_{2},\cdots,\alpha_{n}α1?,α2?,?,αn?与β1,β2,?,βn\beta_{1},\beta_{2},\cdots,\beta_{n}β1?,β2?,?,βn?是向量空间VVV的两组基,则基变换公式为:
(β1,β2,?,βn)=(α1,α2,?,αn)[c11c12?c1nc21c22?c2n????cn1cn2?cnn]=(α1,α2,?,αn)C(\beta_{1},\beta_{2},\cdots,\beta_{n}) = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})\begin{bmatrix} c_{11}& c_{12}& \cdots & c_{1n} \\ c_{21}& c_{22}&\cdots & c_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ c_{n1}& c_{n2} & \cdots & c_{ {nn}} \\\end{bmatrix} = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})C(β1?,β2?,?,βn?)=(α1?,α2?,?,αn?)?????c11?c21??cn1??c12?c22??cn2???????c1n?c2n??cnn???????=(α1?,α2?,?,αn?)C
其中CCC是可逆矩阵,称为由基α1,α2,?,αn\alpha_{1},\alpha_{2},\cdots,\alpha_{n}α1?,α2?,?,αn?到基β1,β2,?,βn\beta_{1},\beta_{2},\cdots,\beta_{n}β1?,β2?,?,βn?的过渡矩阵。
6.坐标变换公式
若向量γ\gammaγ在基α1,α2,?,αn\alpha_{1},\alpha_{2},\cdots,\alpha_{n}α1?,α2?,?,αn?与基β1,β2,?,βn\beta_{1},\beta_{2},\cdots,\beta_{n}β1?,β2?,?,βn?的坐标分别是
X=(x1,x2,?,xn)TX = {(x_{1},x_{2},\cdots,x_{n})}^{T}X=(x1?,x2?,?,xn?)T,
Y=(y1,y2,?,yn)TY = \left( y_{1},y_{2},\cdots,y_{n} \right)^{T}Y=(y1?,y2?,?,yn?)T 即: γ=x1α1+x2α2+?+xnαn=y1β1+y2β2+?+ynβn\gamma =x_{1}\alpha_{1} + x_{2}\alpha_{2} + \cdots + x_{n}\alpha_{n} = y_{1}\beta_{1} +y_{2}\beta_{2} + \cdots + y_{n}\beta_{n}γ=x1?α1?+x2?α2?+?+xn?αn?=y1?β1?+y2?β2?+?+yn?βn?,则向量坐标变换公式为X=CYX = CYX=CY 或Y=C?1XY = C^{- 1}XY=C?1X,其中CCC是从基α1,α2,?,αn\alpha_{1},\alpha_{2},\cdots,\alpha_{n}α1?,α2?,?,αn?到基β1,β2,?,βn\beta_{1},\beta_{2},\cdots,\beta_{n}β1?,β2?,?,βn?的过渡矩阵。
7.向量的内积
(α,β)=a1b1+a2b2+?+anbn=αTβ=βTα(\alpha,\beta) = a_{1}b_{1} + a_{2}b_{2} + \cdots + a_{n}b_{n} = \alpha^{T}\beta = \beta^{T}\alpha(α,β)=a1?b1?+a2?b2?+?+an?bn?=αTβ=βTα
8.Schmidt 正交化
若α1,α2,?,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1?,α2?,?,αs?线性无关,则可构造β1,β2,?,βs\beta_{1},\beta_{2},\cdots,\beta_{s}β1?,β2?,?,βs?使其两两正交,且βi\beta_{i}βi?仅是α1,α2,?,αi\alpha_{1},\alpha_{2},\cdots,\alpha_{i}α1?,α2?,?,αi?的线性组合(i=1,2,?,n)(i= 1,2,\cdots,n)(i=1,2,?,n),再把βi\beta_{i}βi?单位化,记γi=βi∣βi∣\gamma_{i} =\frac{\beta_{i}}{\left| \beta_{i}\right|}γi?=∣βi?∣βi??,则γ1,γ2,?,γi\gamma_{1},\gamma_{2},\cdots,\gamma_{i}γ1?,γ2?,?,γi?是规范正交向量组。其中
β1=α1\beta_{1} = \alpha_{1}β1?=α1?, β2=α2?(α2,β1)(β1,β1)β1\beta_{2} = \alpha_{2} -\frac{(\alpha_{2},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1}β2?=α2??(β1?,β1?)(α2?,β1?)?β1? , β3=α3?(α3,β1)(β1,β1)β1?(α3,β2)(β2,β2)β2\beta_{3} =\alpha_{3} - \frac{(\alpha_{3},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} -\frac{(\alpha_{3},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2}β3?=α3??(β1?,β1?)(α3?,β1?)?β1??(β2?,β2?)(α3?,β2?)?β2? ,
…
βs=αs?(αs,β1)(β1,β1)β1?(αs,β2)(β2,β2)β2???(αs,βs?1)(βs?1,βs?1)βs?1\beta_{s} = \alpha_{s} - \frac{(\alpha_{s},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} - \frac{(\alpha_{s},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2} - \cdots - \frac{(\alpha_{s},\beta_{s - 1})}{(\beta_{s - 1},\beta_{s - 1})}\beta_{s - 1}βs?=αs??(β1?,β1?)(αs?,β1?)?β1??(β2?,β2?)(αs?,β2?)?β2????(βs?1?,βs?1?)(αs?,βs?1?)?βs?1?
9.正交基及规范正交基
向量空间一组基中的向量如果两两正交,就称为正交基;若正交基中每个向量都是单位向量,就称其为规范正交基。
4.线性方程组
1.克莱姆法则
线性方程组{a11x1+a12x2+?+a1nxn=b1a21x1+a22x2+?+a2nxn=b2?????????an1x1+an2x2+?+annxn=bn\begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots +a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} =b_{2} \\ \quad\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{ {nn}}x_{n} = b_{n} \\ \end{cases}??????????a11?x1?+a12?x2?+?+a1n?xn?=b1?a21?x1?+a22?x2?+?+a2n?xn?=b2??????????an1?x1?+an2?x2?+?+ann?xn?=bn??,如果系数行列式D=∣A∣≠0D = \left| A \right| \neq 0D=∣A∣??=0,则方程组有唯一解,x1=D1D,x2=D2D,?,xn=DnDx_{1} = \frac{D_{1}}{D},x_{2} = \frac{D_{2}}{D},\cdots,x_{n} =\frac{D_{n}}{D}x1?=DD1??,x2?=DD2??,?,xn?=DDn??,其中DjD_{j}Dj?是把DDD中第jjj列元素换成方程组右端的常数列所得的行列式。
2. nnn阶矩阵AAA可逆?Ax=0\Leftrightarrow Ax = 0?Ax=0只有零解。??b,Ax=b\Leftrightarrow\forall b,Ax = b??b,Ax=b总有唯一解,一般地,r(Am×n)=n?Ax=0r(A_{m \times n}) = n \Leftrightarrow Ax= 0r(Am×n?)=n?Ax=0只有零解。
3.非奇次线性方程组有解的充分必要条件,线性方程组解的性质和解的结构
(1) 设AAA为m×nm \times nm×n矩阵,若r(Am×n)=mr(A_{m \times n}) = mr(Am×n?)=m,则对Ax=bAx =bAx=b而言必有r(A)=r(A?b)=mr(A) = r(A \vdots b) = mr(A)=r(A?b)=m,从而Ax=bAx = bAx=b有解。
(2) 设x1,x2,?xsx_{1},x_{2},\cdots x_{s}x1?,x2?,?xs?为Ax=bAx = bAx=b的解,则k1x1+k2x2?+ksxsk_{1}x_{1} + k_{2}x_{2}\cdots + k_{s}x_{s}k1?x1?+k2?x2??+ks?xs?当k1+k2+?+ks=1k_{1} + k_{2} + \cdots + k_{s} = 1k1?+k2?+?+ks?=1时仍为Ax=bAx =bAx=b的解;但当k1+k2+?+ks=0k_{1} + k_{2} + \cdots + k_{s} = 0k1?+k2?+?+ks?=0时,则为Ax=0Ax =0Ax=0的解。特别x1+x22\frac{x_{1} + x_{2}}{2}2x1?+x2??为Ax=bAx = bAx=b的解;2x3?(x1+x2)2x_{3} - (x_{1} +x_{2})2x3??(x1?+x2?)为Ax=0Ax = 0Ax=0的解。
(3) 非齐次线性方程组Ax=b{Ax} = bAx=b无解?r(A)+1=r(A?)?b\Leftrightarrow r(A) + 1 =r(\overline{A}) \Leftrightarrow b?r(A)+1=r(A)?b不能由AAA的列向量α1,α2,?,αn\alpha_{1},\alpha_{2},\cdots,\alpha_{n}α1?,α2?,?,αn?线性表示。
4.奇次线性方程组的基础解系和通解,解空间,非奇次线性方程组的通解
(1) 齐次方程组Ax=0{Ax} = 0Ax=0恒有解(必有零解)。当有非零解时,由于解向量的任意线性组合仍是该齐次方程组的解向量,因此Ax=0{Ax}= 0Ax=0的全体解向量构成一个向量空间,称为该方程组的解空间,解空间的维数是n?r(A)n - r(A)n?r(A),解空间的一组基称为齐次方程组的基础解系。
(2) η1,η2,?,ηt\eta_{1},\eta_{2},\cdots,\eta_{t}η1?,η2?,?,ηt?是Ax=0{Ax} = 0Ax=0的基础解系,即:
-
η1,η2,?,ηt\eta_{1},\eta_{2},\cdots,\eta_{t}η1?,η2?,?,ηt?是Ax=0{Ax} = 0Ax=0的解;
-
η1,η2,?,ηt\eta_{1},\eta_{2},\cdots,\eta_{t}η1?,η2?,?,ηt?线性无关;
-
Ax=0{Ax} = 0Ax=0的任一解都可以由η1,η2,?,ηt\eta_{1},\eta_{2},\cdots,\eta_{t}η1?,η2?,?,ηt?线性表出.
k1η1+k2η2+?+ktηtk_{1}\eta_{1} + k_{2}\eta_{2} + \cdots + k_{t}\eta_{t}k1?η1?+k2?η2?+?+kt?ηt?是Ax=0{Ax} = 0Ax=0的通解,其中k1,k2,?,ktk_{1},k_{2},\cdots,k_{t}k1?,k2?,?,kt?是任意常数。
5.矩阵的特征值和特征向量
1.矩阵的特征值和特征向量的概念及性质
(1) 设λ\lambdaλ是AAA的一个特征值,则 kA,aA+bE,A2,Am,f(A),AT,A?1,A?{kA},{aA} + {bE},A^{2},A^{m},f(A),A^{T},A^{- 1},A^{*}kA,aA+bE,A2,Am,f(A),AT,A?1,A?有一个特征值分别为
kλ,aλ+b,λ2,λm,f(λ),λ,λ?1,∣A∣λ,{kλ},{aλ} + b,\lambda^{2},\lambda^{m},f(\lambda),\lambda,\lambda^{- 1},\frac{|A|}{\lambda},kλ,aλ+b,λ2,λm,f(λ),λ,λ?1,λ∣A∣?,且对应特征向量相同(ATA^{T}AT 例外)。
(2)若λ1,λ2,?,λn\lambda_{1},\lambda_{2},\cdots,\lambda_{n}λ1?,λ2?,?,λn?为AAA的nnn个特征值,则∑i=1nλi=∑i=1naii,∏i=1nλi=∣A∣\sum_{i= 1}^{n}\lambda_{i} = \sum_{i = 1}^{n}a_{ {ii}},\prod_{i = 1}^{n}\lambda_{i}= |A|∑i=1n?λi?=∑i=1n?aii?,∏i=1n?λi?=∣A∣ ,从而∣A∣≠0?A|A| \neq 0 \Leftrightarrow A∣A∣??=0?A没有特征值。
(3)设λ1,λ2,?,λs\lambda_{1},\lambda_{2},\cdots,\lambda_{s}λ1?,λ2?,?,λs?为AAA的sss个特征值,对应特征向量为α1,α2,?,αs\alpha_{1},\alpha_{2},\cdots,\alpha_{s}α1?,α2?,?,αs?,
若: α=k1α1+k2α2+?+ksαs\alpha = k_{1}\alpha_{1} + k_{2}\alpha_{2} + \cdots + k_{s}\alpha_{s}α=k1?α1?+k2?α2?+?+ks?αs? ,
则: Anα=k1Anα1+k2Anα2+?+ksAnαs=k1λ1nα1+k2λ2nα2+?ksλsnαsA^{n}\alpha = k_{1}A^{n}\alpha_{1} + k_{2}A^{n}\alpha_{2} + \cdots +k_{s}A^{n}\alpha_{s} = k_{1}\lambda_{1}^{n}\alpha_{1} +k_{2}\lambda_{2}^{n}\alpha_{2} + \cdots k_{s}\lambda_{s}^{n}\alpha_{s}Anα=k1?Anα1?+k2?Anα2?+?+ks?Anαs?=k1?λ1n?α1?+k2?λ2n?α2?+?ks?λsn?αs? 。
2.相似变换、相似矩阵的概念及性质
(1) 若A?BA \sim BA?B,则
-
AT?BT,A?1?B?1,,A??B?A^{T} \sim B^{T},A^{- 1} \sim B^{- 1},,A^{*} \sim B^{*}AT?BT,A?1?B?1,,A??B?
-
∣A∣=∣B∣,∑i=1nAii=∑i=1nbii,r(A)=r(B)|A| = |B|,\sum_{i = 1}^{n}A_{ {ii}} = \sum_{i =1}^{n}b_{ {ii}},r(A) = r(B)∣A∣=∣B∣,∑i=1n?Aii?=∑i=1n?bii?,r(A)=r(B)
-
∣λE?A∣=∣λE?B∣|\lambda E - A| = |\lambda E - B|∣λE?A∣=∣λE?B∣,对?λ\forall\lambda?λ成立
3.矩阵可相似对角化的充分必要条件
(1)设AAA为nnn阶方阵,则AAA可对角化?\Leftrightarrow?对每个kik_{i}ki?重根特征值λi\lambda_{i}λi?,有n?r(λiE?A)=kin-r(\lambda_{i}E - A) = k_{i}n?r(λi?E?A)=ki?
(2) 设AAA可对角化,则由P?1AP=Λ,P^{- 1}{AP} = \Lambda,P?1AP=Λ,有A=PΛP?1A = {PΛ}P^{-1}A=PΛP?1,从而An=PΛnP?1A^{n} = P\Lambda^{n}P^{- 1}An=PΛnP?1
(3) 重要结论
-
若A?B,C?DA \sim B,C \sim DA?B,C?D,则[AOOC]?[BOOD]\begin{bmatrix} A & O \\ O & C \\\end{bmatrix} \sim \begin{bmatrix} B & O \\ O & D \\\end{bmatrix}[AO?OC?]?[BO?OD?].
-
若A?BA \sim BA?B,则f(A)?f(B),∣f(A)∣?∣f(B)∣f(A) \sim f(B),\left| f(A) \right| \sim \left| f(B)\right|f(A)?f(B),∣f(A)∣?∣f(B)∣,其中f(A)f(A)f(A)为关于nnn阶方阵AAA的多项式。
-
若AAA为可对角化矩阵,则其非零特征值的个数(重根重复计算)=秩(AAA)
4.实对称矩阵的特征值、特征向量及相似对角阵
(1)相似矩阵:设A,BA,BA,B为两个nnn阶方阵,如果存在一个可逆矩阵PPP,使得B=P?1APB =P^{- 1}{AP}B=P?1AP成立,则称矩阵AAA与BBB相似,记为A?BA \sim BA?B。
(2)相似矩阵的性质:如果A?BA \sim BA?B则有:
-
AT?BTA^{T} \sim B^{T}AT?BT
-
A?1?B?1A^{- 1} \sim B^{- 1}A?1?B?1 (若AAA,BBB均可逆)
-
Ak?BkA^{k} \sim B^{k}Ak?Bk (kkk为正整数)
-
∣λE?A∣=∣λE?B∣\left| {λE} - A \right| = \left| {λE} - B \right|∣λE?A∣=∣λE?B∣,从而A,BA,BA,B
有相同的特征值 -
∣A∣=∣B∣\left| A \right| = \left| B \right|∣A∣=∣B∣,从而A,BA,BA,B同时可逆或者不可逆
-
秩(A)=\left( A \right) =(A)=秩(B),∣λE?A∣=∣λE?B∣\left( B \right),\left| {λE} - A \right| =\left| {λE} - B \right|(B),∣λE?A∣=∣λE?B∣,A,BA,BA,B不一定相似
6.二次型
1.n\mathbf{n}n个变量x1,x2,?,xn\mathbf{x}_{\mathbf{1}}\mathbf{,}\mathbf{x}_{\mathbf{2}}\mathbf{,\cdots,}\mathbf{x}_{\mathbf{n}}x1?,x2?,?,xn?的二次齐次函数
f(x1,x2,?,xn)=∑i=1n∑j=1naijxiyjf(x_{1},x_{2},\cdots,x_{n}) = \sum_{i = 1}^{n}{\sum_{j =1}^{n}{a_{ {ij}}x_{i}y_{j}}}f(x1?,x2?,?,xn?)=∑i=1n?∑j=1n?aij?xi?yj?,其中aij=aji(i,j=1,2,?,n)a_{ {ij}} = a_{ {ji}}(i,j =1,2,\cdots,n)aij?=aji?(i,j=1,2,?,n),称为nnn元二次型,简称二次型. 若令x=[x1x1?xn],A=[a11a12?a1na21a22?a2n????an1an2?ann]x = \ \begin{bmatrix}x_{1} \\ x_{1} \\ \vdots \\ x_{n} \\ \end{bmatrix},A = \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \cdots &\cdots &\cdots &\cdots \\ a_{n1}& a_{n2} & \cdots & a_{ {nn}} \\\end{bmatrix}x= ??????x1?x1??xn????????,A=?????a11?a21??an1??a12?a22??an2???????a1n?a2n??ann???????,这二次型fff可改写成矩阵向量形式f=xTAxf =x^{T}{Ax}f=xTAx。其中AAA称为二次型矩阵,因为aij=aji(i,j=1,2,?,n)a_{ {ij}} =a_{ {ji}}(i,j =1,2,\cdots,n)aij?=aji?(i,j=1,2,?,n),所以二次型矩阵均为对称矩阵,且二次型与对称矩阵一一对应,并把矩阵AAA的秩称为二次型的秩。
2.惯性定理,二次型的标准形和规范形
(1) 惯性定理
对于任一二次型,不论选取怎样的合同变换使它化为仅含平方项的标准型,其正负惯性指数与所选变换无关,这就是所谓的惯性定理。
(2) 标准形
二次型f=(x1,x2,?,xn)=xTAxf = \left( x_{1},x_{2},\cdots,x_{n} \right) =x^{T}{Ax}f=(x1?,x2?,?,xn?)=xTAx经过合同变换x=Cyx = {Cy}x=Cy化为f=xTAx=yTCTACf = x^{T}{Ax} =y^{T}C^{T}{AC}f=xTAx=yTCTAC
y=∑i=1rdiyi2y = \sum_{i = 1}^{r}{d_{i}y_{i}^{2}}y=∑i=1r?di?yi2?称为 f(r≤n)f(r \leq n)f(r≤n)的标准形。在一般的数域内,二次型的标准形不是唯一的,与所作的合同变换有关,但系数不为零的平方项的个数由r(A)r(A)r(A)唯一确定。
(3) 规范形
任一实二次型fff都可经过合同变换化为规范形f=z12+z22+?zp2?zp+12???zr2f = z_{1}^{2} + z_{2}^{2} + \cdots z_{p}^{2} - z_{p + 1}^{2} - \cdots -z_{r}^{2}f=z12?+z22?+?zp2??zp+12????zr2?,其中rrr为AAA的秩,ppp为正惯性指数,r?pr -pr?p为负惯性指数,且规范型唯一。
3.用正交变换和配方法化二次型为标准形,二次型及其矩阵的正定性
设AAA正定?kA(k>0),AT,A?1,A?\Rightarrow {kA}(k > 0),A^{T},A^{- 1},A^{*}?kA(k>0),AT,A?1,A?正定;∣A∣>0|A| >0∣A∣>0,AAA可逆;aii>0a_{ {ii}} > 0aii?>0,且∣Aii∣>0|A_{ {ii}}| > 0∣Aii?∣>0
AAA,BBB正定?A+B\Rightarrow A +B?A+B正定,但AB{AB}AB,BA{BA}BA不一定正定
AAA正定?f(x)=xTAx>0,?x≠0\Leftrightarrow f(x) = x^{T}{Ax} > 0,\forall x \neq 0?f(x)=xTAx>0,?x??=0
?A\Leftrightarrow A?A的各阶顺序主子式全大于零
?A\Leftrightarrow A?A的所有特征值大于零
?A\Leftrightarrow A?A的正惯性指数为nnn
?\Leftrightarrow?存在可逆阵PPP使A=PTPA = P^{T}PA=PTP
?\Leftrightarrow?存在正交矩阵QQQ,使QTAQ=Q?1AQ=(λ1?λn),Q^{T}{AQ} = Q^{- 1}{AQ} =\begin{pmatrix} \lambda_{1} & & \\ \begin{matrix} & \\ & \\ \end{matrix} &\ddots & \\ & & \lambda_{n} \\ \end{pmatrix},QTAQ=Q?1AQ=?????λ1??????λn???????,
其中λi>0,i=1,2,?,n.\lambda_{i} > 0,i = 1,2,\cdots,n.λi?>0,i=1,2,?,n.正定?kA(k>0),AT,A?1,A?\Rightarrow {kA}(k >0),A^{T},A^{- 1},A^{*}?kA(k>0),AT,A?1,A?正定; ∣A∣>0,A|A| > 0,A∣A∣>0,A可逆;aii>0a_{ {ii}} >0aii?>0,且∣Aii∣>0|A_{ {ii}}| > 0∣Aii?∣>0 。