本文档详细描述了Centos7.4+zookeeper3.5.8 + hadoop3.2.1+Hbase2.2.5完全分布式+高可用(HA)集群的搭建过程,以及验证等操作使用方法。
hadoop高可用完全分布式集群搭建
Centos7.4+zookeeper3.5.8 + hadoop3.2.1+Hbase2.2.5完全分布式+高可用(HA)
服务器环境准备
- 主机列表
主机IP | 主机名 | 配置 | 操作系统 | 安装软件 | 运行进程 |
---|---|---|---|---|---|
192.168.26.100 | hd100 | 2C 4G | CentOS 7.4.1708 | jdk-8u261-linux-x64 zookeeper-3.5.8 hadoop-3.2.1 hbase-2.2.5 |
DataNode ResourceManager NameNode QuorumPeerMain JournalNode NodeManager DFSZKFailoverController HMaster HRegionServer |
192.168.26.110 | hd110 | 2C 4G | CentOS 7.4.1708 | jdk-8u261-linux-x64 zookeeper-3.5.8 hadoop-3.2.1 hbase-2.2.5 |
DFSZKFailoverController HMaster QuorumPeerMain DataNode NodeManager HRegionServer JournalNode NameNode |
192.168.26.120 | hd120 | 2C 4G | CentOS 7.4.1708 | jdk-8u261-linux-x64 zookeeper-3.5.8 hadoop-3.2.1 hbase-2.2.5 |
ResourceManager NodeManager QuorumPeerMain JournalNode HRegionServer DataNode |
- 部署规划
节点环境及功能 | 192.168.26.100(hd100) | 192.168.26.110(hd110) | 192.168.26.120(hd120) | 备注 |
---|---|---|---|---|
JDK | 部署 | 部署 | 部署 | java环境 |
zookeeper | 部署 | 部署 | 部署 | 集群部署 |
JournalNode | 配置 | 配置 | 配置 | 所有节点 |
NameNode | hmaster1 | hmaster2 | 高可用 | |
NodeManager | 配置 | 配置 | 配置 | 高可用 |
ResourceManager | rm1 | rm2 | 高可用 | |
DataNode | 配置 | 配置 | 配置 | 所有节点 |
HMaster | Master | Backup Master | 高可用 | |
HRegionServer | 配置 | 配置 | 配置 | 所有节点 |
- 设置主机名
hostnamectl set-hostname hd100
hostnamectl set-hostname hd110
hostnamectl set-hostname hd120
- 设置服务器静态ip(以hd100为例)
[root@hd100 ~]# ifconfig
[root@hd100 ~]# cd /etc/sysconfig/network-scripts/
[root@hd100 network-scripts]# ll
vi /etc/sysconfig/network-scripts/ifcfg-ens32
TYPE=Ethernet
BOOTPROTO=static
NAME=ens32
DEVICE=ens32
ONBOOT=yes
IPADDR=192.168.26.100
NETMASK=255.255.255.0
GATEWAY=192.168.26.2
DNS1=192.168.26.2
BOOTPROTO=static
、ONBOOT=yes
systemctl restart network
- 关闭防火墙
systemctl status firewalld
systemctl stop firewalld
systemctl disable firewalld #开机不启动防火墙
- /etc/hosts
192.168.26.100 hd100 vms100.example.com vms100
192.168.26.110 hd110 vms110.example.com vms110
192.168.26.120 hd120 vms120.example.com vms120
- 设置ssh免密登录
ssh-keygen -N ""
ssh-copy-id hd100
ssh-copy-id hd110
ssh-copy-id hd120
- 设置用户参数(以hd100为例)
查看和修改用户可打开文件数(参数名:open files)及进程数(参数名:max user process)
ulimit –a 查看系统对当前用户限定的最大可打开文件数及进程数
[root@hd100 ~]# ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 15021
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 15021
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited
修改:
open files 建议改为10240以上
max user processes建议改为10240以上
[root@hd100 ~]# vi /etc/systemd/system.conf
...
#DefaultLimitNOFILE=
DefaultLimitNOFILE=10240
#DefaultLimitAS=
#DefaultLimitNPROC=
DefaultLimitNPROC=40960
...
重启后这两个参数对root用户生效,【open files】参数对普通用户也有效,普遍用户的【max user processes】参数是通过 /etc/security/limits.d/20-nproc.conf控制的。
[root@hd100 ~]# vi /etc/security/limits.d/20-nproc.conf
# Default limit for number of user's processes to prevent
# accidental fork bombs.
# See rhbz #432903 for reasoning.* soft nproc 20480
root soft nproc unlimited
修改后使参数生效:
[root@hd100 ~]# sysctl -p
- 同步时间,配置自动同步计划任务
所有节点设置时区,中国所用时区
timedatectl #读取当前时间,查看是否为Time zone: Asia/Shanghai (CST, +0800),否则用以下命令修改
timedatectl set-timezone Asia/Shanghai #设置时区为亚洲/上海
所有节点安装(以hd100为例)
[root@hd100 ~]# rpm -q ntp
未安装软件包 ntp
[root@hd100 ~]# yum -y install ntp
...
[root@hd100 ~]# systemctl list-unit-files | grep chronyd
chronyd.service enabled
[root@hd100 ~]# systemctl disable chronyd.service #关闭 chronyd 服务的开机自启行为
Removed symlink /etc/systemd/system/multi-user.target.wants/chronyd.service.
[root@hd100 ~]# systemctl list-unit-files | grep chronyd
chronyd.service disabled
[root@hd100 ~]# service ntpd start
Redirecting to /bin/systemctl start ntpd.service
[root@hd100 ~]# service ntpd status
...
[root@hd100 ~]# systemctl enable ntpd.service
...
[root@hd100 ~]# systemctl list-unit-files | grep ntpd #查看自启动项ntpd状态ntpd.service enable # 开机自启(ntpd服务-平滑调整时间)ntpdate.service disable # 开机不自启(ntpdate服务-瞬间调整时间)
hd100上执行:配置内网NTP-Server
[root@hd100 ~]# vi /etc/ntp.conf
...
# Permit all access over the loopback interface. This could
# be tightened as well, but to do so would effect some of
# the administrative functions.
restrict 203.107.6.88
restrict 127.0.0.1
restrict ::1# Hosts on local network are less restricted.
#restrict 192.168.1.0 mask 255.255.255.0 nomodify notrap
restrict 192.168.26.0 mask 255.255.255.0 nomodify# Use public servers from the pool.ntp.org project.
# Please consider joining the pool (http://www.pool.ntp.org/join.html).
server 203.107.6.88 # aliyun clock#server 0.centos.pool.ntp.org iburst
#server 1.centos.pool.ntp.org iburst
#server 2.centos.pool.ntp.org iburst
#server 3.centos.pool.ntp.org iburstserver 127.127.1.0 # local clock
fudge 127.127.1.0 stratum 10
...
说明:
1.注释掉原有的四个server,如下:#server 0.centos.pool.ntp.org iburst#server 1.centos.pool.ntp.org iburst#server 2.centos.pool.ntp.org iburst#server 3.centos.pool.ntp.org iburst
2.在其上增加aliyun的serverserver 203.107.6.88 # aliyun clock
3.增加aliyun server放行restrict 203.107.6.88
4.增加内网server放行,不允许其修改服务器时间参数(单个IP放行)restrict 192.168.26.110 nomodify(网段放行)restrict 192.168.26.0 mask 255.255.255.0 nomodify
5.增加外部服务时间不可获取时,使用本地时间server 127.127.1.0 # local clockfudge 127.127.1.0 stratum 10*注:配置文件中,写在靠前的 server 优先级高于 靠后的 server所以把 server 203.107.6.88 写在 server 127.127.1.0 之前,意为:本机优先与 203.107.6.88 同步
启动NTPD服务,等待同步
[root@hd100 ~]# service ntpd stop #修改完配置文件后,停止NTPD服务
[root@hd100 ~]# ntpdate 203.107.6.88 #ntpd服务启动后不能执行ntpdate服务命令
[root@hd100 ~]# service ntpd start #启动并查看NTP服务是否开始同步,通常需要在ntpd启动后15分钟内才能开始同步
[root@hd100 ~]# ntpstat
synchronised to NTP server (203.107.6.88) at stratum 3time correct to within 52 mspolling server every 128 s
[root@hd100 ~]# ntpq -premote refid st t when poll reach delay offset jitter
==============================================================================
*203.107.6.88 10.137.38.86 2 u 47 128 377 41.523 17.724 12.166LOCAL(0) .LOCL. 10 l 40m 64 0 0.000 0.000 0.000
参数解释:
remote:是上层 NTP 服务器的 IP 或主主机名注意最左邊的符号: 1.如果有『 * 』代表目前正在作用当中的上层 NTP2.如果是『 + 』代表也有连上线,而且可作为下一个提供时间更新的候选者。refid:是 remote 服务器参考的上一层 NTP 服务器的地址st:是 stratum 层级when:几秒钟前曾经做过时间同步化更新的动作;poll:下一次更新在几秒钟之后;reach:已经向上层 NTP 服务器要求更新的次数delay:网络传输过程中延迟的时间,单位为 10^(-3) 秒offset:时间补偿的结果,单位为 10^(-3) 秒jitter:Linux 系统时间与 BIOS 硬件时间的差距时间,单位为 10^(-3) 秒。
hd110、hd120上执行:配置内网NTP-Clients
修改 /etc/ntp.conf 文件,主要的几个修改地方
1.注释掉原有的四个server,如下:#server 0.centos.pool.ntp.org iburst#server 1.centos.pool.ntp.org iburst#server 2.centos.pool.ntp.org iburst#server 3.centos.pool.ntp.org iburst
2.在其上增加主节点IPserver 192.168.26.100 # master lock
3.增加master server放行restrict 192.168.26.100
4.增加外部服务时间不可获取时,使用本地时间server 127.127.1.0 # local clockfudge 127.127.1.0 stratum 10 # 不可以超过15层
启动NTPD服务,等待同步(15分钟以内)
1.修改完配置文件后,停止NTPD服务# service ntpd stop
2.同步本机与主节点时间服务器 192.168.26.100 (master clock)时间(以免时间差距太大,使ntp不能正常同步校准)# ntpdate 192.168.26.100
3.启动并查看NTP服务是否开始同步,通常需要在ntpd启动后15分钟内才能开始同步# service ntpd start# ntpstatsynchronised to NTP server (192.168.26.100) at stratum 4 -- 已经开始同步,层数4---比上层master的NTPD服务(为3)低一层,最高层为1time correct to within 508 ms -- 时间校准到508ms以内polling server every 128 s -- 每隔128s轮询一次服务器
4.查看当前NTP服务器与上层NTP服务器的状态 (hd100就是192.168.26.100)# [root@hd110 ~]# ntpq -premote refid st t when poll reach delay offset jitter
==============================================================================hd100 LOCAL(0) 11 u 40 64 17 0.843 40.812 0.659
*LOCAL(0) .LOCL. 10 l 48 64 17 0.000 0.000 0.000# [root@hd110 ~]# ntpq -p #等一会后与NTP服务器hd100同步remote refid st t when poll reach delay offset jitter
==============================================================================
*hd100 203.107.6.88 3 u 98 128 377 0.649 32.619 7.959LOCAL(0) .LOCL. 10 l 299 64 360 0.000 0.000 0.000
软件下载地址
https://mirrors.tuna.tsinghua.edu.cn/apache/
-
hadoop-3.2.1.tar.gz
https://mirrors.tuna.tsinghua.edu.cn/apache/hadoop/core/stable2/hadoop-3.2.1.tar.gz
-
hbase-2.2.5-bin.tar.gz
https://mirrors.tuna.tsinghua.edu.cn/apache/hbase/stable/hbase-2.2.5-bin.tar.gz
-
apache-zookeeper-3.5.8-bin.tar.gz
https://mirrors.tuna.tsinghua.edu.cn/apache/zookeeper/stable/apache-zookeeper-3.5.8-bin.tar.gz
-
jdk-8u261-linux-x64.tar.gz
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html#license-lightbox
下载软件并存放到:/opt/src
-rw-r--r-- 1 root root 9394700 apache-zookeeper-3.5.8-bin.tar.gz
-rw-r--r-- 1 root root 359196911 hadoop-3.2.1.tar.gz
-rw-r--r-- 1 root root 220221311 hbase-2.2.5-bin.tar.gz
-rw-r--r-- 1 root root 143111803 jdk-8u261-linux-x64.tar.gz
官网链接:
https://hadoop.apache.org/releases.html
http://hbase.apache.org/
http://hbase.apache.org/book.html#quickstart
https://cwiki.apache.org/confluence/display/HADOOP/Hadoop+Java+Versions
安装JDK
为了避免干扰,先卸载系统自带的open jdk
- 查看:
rpm -qa|grep jdk
- 卸载系统自带的open jdk:
rpm -e --nodeps `rpm -qa | grep java`
- 解压
mkdir /home/hadoop
cd /opt/src
tar -zxvf jdk-8u261-linux-x64.tar.gz -C /home/hadoop/
cd /home/hadoop/
mv jdk1.8.0_261 jdk8
- 配置:在/etc/profile末尾追加
HADOOP_HOME=/home/hadoop/hadoop
JAVA_HOME=/home/hadoop/jdk8
HBASE_HOME=/home/hadoop/hbase
PATH=.:$HBASE_HOME/bin:$HIVE_HOME/bin:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
export HADOOP_HOME
export JAVA_HOME
export PATH
export CLASSPATH
export HBASE_HOME
source /etc/profile
配置zookeeper
cd /opt/src
tar -zxvf apache-zookeeper-3.5.8-bin.tar.gz -C /home
cd /home
mv apache-zookeeper-3.5.8-bin zookeeper
[root@hd100 ~]# cd /home/zookeeper/conf
[root@hd100 conf]# cp zoo_sample.cfg zoo.cfg
[root@hd100 conf]# vi zoo.cfg
tickTime=2000
initLimit=10
syncLimit=5
dataDir=/home/hadoop/zookeeper/data
dataLogDir=/home/hadoop/zookeeper/log
clientPort=2181
# 保留多少个快照
autopurge.snapRetainCount=3
# 日志多少小时清理一次
autopurge.purgeInterval=1
# 集群中服务器地址
server.1=hd100:2888:3888
server.2=hd110:2888:3888
server.3=hd120:2888:3888
说明:
tickTime
表示节点间通信超时的单位时长,单位是毫秒。initLimit
是指follower
服务器初始化连接到leader
服务器时可以忍受的超时时间,时长以initLimit * tickTime
表示。syncLimit
指leader
与follower
之间通信的超时时长,以syncLimit * tickTime
表示,这里是5*2000=10
秒。server.1=hd100:2888:3888
这一行中的server.1
表示节点编号,hd100
表示这台服务器的主机名,也可以直接指定ip地址,2888
是ZooKeeper
服务间通信的端口,3888
是ZooKeeper
服务与其他服务通信的端口。dataDir
指定ZooKeeper
的数据目录。autopurge.purgeInterval=1
表示开启日志和镜像文件自动清理功能。
创建dataDir
文件夹和在里面创建文件myid
并写入数字1(hd100),其他两个节点的myid
为2(hd110)、3(hd120)
myid
与server.x
的对应
mkdir -p /home/hadoop/zookeeper/{data,log}
vi /home/hadoop/zookeeper/data/myid
修改环境变量文件:/etc/profile
- 追加内容: export ZOOKEEPER_HOME=/home/zookeeper
- 修改PATH:在PATH项的
$PATH
前面面追加:
$ZOOKEEPER_HOME/bin:$ZOOKEEPER_HOME/conf
三台机器启动zookeeper服务,这个命令三台机器都要执行
/home/zookeeper/bin/zkServer.sh start
/home/zookeeper/bin/zkServer.sh status #查看启动状态
配置hadoop
安装目录:/home/hadoop/hadoop
cd /opt/src
tar -zxvf hadoop-3.2.1.tar.gz -C /home/hadoop
cd /home/hadoop/
mv hadoop-3.2.1 hadoop
配置hadoop-env.sh
vi /home/hadoop/hadoop/etc/hadoop/hadoop-env.sh
1、配置java安装录入
...
export JAVA_HOME=/home/hadoop/jdk8
...
2、配置hadoop NameNode运行堆内存-Xmx2g -Xms2g
...
export HADOOP_NAMENODE_OPTS="-Xmx2g -Xms2g -Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_NAMENODE_OPTS"
...
3、配置hadoop DataNode运行堆内存
...
export HADOOP_DATANODE_OPTS="-Xmx2g -Xms2g -Dhadoop.security.logger=ERROR,RFAS $HADOOP_DATANODE_OPTS"
...
4、配置hadoop进程id文件路径,HADOOP_PID_DIR默认为/tmp,操作系统重启时可能会清除
...
export HADOOP_PID_DIR=/home/hadoop/hadoop
...
配置core-site.xml
vi /home/hadoop/hadoop/etc/hadoop/core-site.xml
<configuration>
<!-- 指定hdfs的nameservice为masters -->
<property><name>fs.defaultFS</name><value>hdfs://mycluster</value>
</property>
<!-- The size of buffer for use in sequence files. The size of this buffer should probably be a multiple of hardware page size (4096 on Intel x86), and it determines how much data is buffered during read and write operations.默认为4096-->
<property><name>io.file.buffer.size</name><value>40960</value>
</property>
<!-- 指定hadoop临时目录 -->
<property><name>hadoop.tmp.dir</name><value>/home/hadoop/hadoop/tmp/${user.name}</value>
</property>
<!-- 指定zookeeper地址 -->
<property><name>ha.zookeeper.quorum</name><value>hd100:2181,hd110:2181,hd120:2181</value>
</property>
<!-- 解决:Active NameNode日志出现异常IPC‘s epoch [X] is less than the last promised epoch [X+1],出现短期的双Active -->
<property><name>ha.health-monitor.rpc-timeout.ms</name> <value>180000</value>
</property></configuration>
配置hdfs-site.xml
vi /home/hadoop/hadoop/etc/hadoop/hdfs-site.xml
<configuration><!--指定hdfs的nameservice为mycluster,需要和core-site.xml中的保持一致 --><property><name>dfs.nameservices</name><value>mycluster</value></property><!-- mycluster下面有两个NameNode,逻辑名分别设置为hmaster1,hmaster2,也可设置为nn1,nn2,后面的配置要统一引用该逻辑名 --><property><name>dfs.ha.namenodes.mycluster</name><value>hmaster1,hmaster2</value></property><!-- hmaster1的RPC通信地址 --><property><name>dfs.namenode.rpc-address.mycluster.hmaster1</name><value>hd100:9000</value></property><!-- hmaster1的http通信地址 --><property><name>dfs.namenode.http-address.mycluster.hmaster1</name><value>hd100:50070</value></property><!-- hmaster1的servicerpc通信地址 --><property><name> dfs.namenode.servicerpc-address.mycluster.hmaster1</name><value>hd100:53310</value></property><!-- hmaster2的RPC通信地址 --><property><name>dfs.namenode.rpc-address.mycluster.hmaster2</name><value>hd110:9000</value></property><!-- hmaster2的http通信地址 --><property><name>dfs.namenode.http-address.mycluster.hmaster2</name><value>hd110:50070</value></property><!--hmaster2的servicerpc通信地址 --><property><name> dfs.namenode.servicerpc-address.mycluster.hmaster2</name><value>hd110:53310</value></property><!-- 指定NameNode的元数据在JournalNode上的存放位置 --><property><name> dfs.namenode.name.dir </name><value>/home/hadoop/hadoop/data01/mycluster</value><final>true</final></property><!-- 指定NameNode的元数据在JournalNode上的存放位置,必须是/home/hadoop/hadoop/sbin/hadoop-daemons.sh start journalnode启动的节点 --><property><name>dfs.namenode.shared.edits.dir</name><value>qjournal://hd100:8485;hd110:8485;hd120:8485/mycluster</value></property><!-- 指定JournalNode在本地磁盘存放数据的位置 --><property><name>dfs.journalnode.edits.dir</name><value>/home/hadoop/hadoop/data01/tmp/journal</value></property><!-- 开启NameNode失败自动切换 --><property><name>dfs.ha.automatic-failover.enabled</name><value>true</value></property><!-- 配置失败自动切换实现方式 --><property><name>dfs.client.failover.proxy.provider.mycluster</name><value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value></property><!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行--><property><name>dfs.ha.fencing.methods</name><value>sshfenceshell(/bin/true)</value></property><!-- 使用sshfence隔离机制时需要ssh免登陆。注意换成登陆用户名的/home/hadoop/.ssh/id_dsa --><property><name>dfs.ha.fencing.ssh.private-key-files</name><value>/root/.ssh/id_rsa</value></property><!-- 配置sshfence隔离机制超时时间 --><property><name>dfs.ha.fencing.ssh.connect-timeout</name><value>30000</value></property><!-- 指定DataNode数据的存放位置,建议一台机器挂多个盘,,一方面增大容量,另一方面减少磁盘单点故障及磁盘读写能力 --><property><name> dfs.datanode.data.dir </name><value>/home/hadoop/hadoop/data01/dn,/home/hadoop/hadoop/data02/dn,/home/hadoop/hadoop/data03/dn,/home/hadoop/hadoop/data04/dn</value><final>true</final></property><property><name> dfs.namenode.checkpoint.dir.mycluster </name><value>/home/hadoop/hadoop/data01/dfs/namesecondary</value><final>true</final></property><!--每个DataNode上需预留的空间,给非hdfs使用,默认为0,Reserved space in bytes per volume --><property><name> dfs.datanode.du.reserved </name><value>102400</value><final>true</final></property><!--限制hdfs负载均衡时占用的最大带宽Specifies the maximum amount of bandwidth that each datanode can utilize for the balancing purpose in term of the number of bytes per second. --><property><name>dfs.datanode.balance.bandwidthPerSec</name><value>10485760000</value></property>
</configuration>
注意登陆用户名进行替换/home/hadoop/.ssh/id_dsa
<configuration><!--指定hdfs的nameservice为masters,需要和core-site.xml中的保持一致 --><property><name>dfs.nameservices</name><value>masters</value></property><!-- Master下面有两个NameNode,分别是nn1,nn2 --><property><name>dfs.ha.namenodes.masters</name><value>nn1,nn2</value></property><!--nn1的RPC通信地址--><property><name>dfs.namenode.rpc-address.masters.nn1</name><value>hd100:9000</value></property><!--nn1的http通信地址--><property><name>dfs.namenode.http-address.masters.nn1</name><value>hd100:50070</value></property><!--nn2的RPC通信地址--><property><name>dfs.namenode.rpc-address.masters.nn2</name><value>hd110:9000</value></property><!--nn2的http通信地址--><property><name>dfs.namenode.http-address.masters.nn2</name><value>hd110:50070</value></property> <!-- 指定NameNode的元数据在JournalNode上的存放位置 --><property><name>dfs.namenode.shared.edits.dir</name><value>qjournal://hd100:8485;hd110:8485;hd120:8485/masters</value> </property><!-- 指定JournalNode在本地磁盘存放数据的位置 --><property><name>dfs.journalnode.edits.dir</name><value>/home/hadoophadoop/journal</value></property><!-- 开启NameNode失败自动切换 --><property><name>dfs.ha.automatic-failover.enabled</name><value>true</value></property><!-- 配置失败自动切换实现方式 --><property><name>dfs.client.failover.proxy.provider.masters</name><value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value></property><!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行--><property><name>dfs.ha.fencing.methods</name><value>sshfence</value></property><!-- 使用sshfence隔离机制时需要ssh免登陆 --><property><name>dfs.ha.fencing.ssh.private-key-files</name><value>/root/.ssh/id_rsa</value></property><!-- 配置sshfence隔离机制超时时间 --><property><name>dfs.ha.fencing.ssh.connect-timeout</name><value>30000</value></property><!--设置hdfs的操作权限,false表示任何用户都可以在hdfs上操作文件--><property><name>dfs.permissions</name><value>false</value></property>
</configuration>
配置mapred-site.xml
vi /home/hadoop/hadoop/etc/hadoop/mapred-site.xml
<configuration><!-- 指定mr框架为yarn方式 --><property><name>mapreduce.framework.name</name><value>yarn</value></property><!-- Expert: Set this to true to let the tasktracker send an out-of-band heartbeat on task-completion for better latency. --><property><name>mapreduce.tasktracker.outofband.heartbeat</name><value>true</value></property>
</configuration>
配置yarn-site.xml
vi /home/hadoop/hadoop/etc/hadoop/yarn-site.xml
<configuration>
<!-- Site specific YARN configuration properties --><!-- 开启RM高可靠 --><property><name>yarn.resourcemanager.ha.enabled</name><value>true</value></property><!-- 指定RM的cluster id --><property><name>yarn.resourcemanager.cluster-id</name><value>RM_HA_ID</value></property><!-- 指定RM的名字 --><property><name>yarn.resourcemanager.ha.rm-ids</name><value>rm1,rm2</value></property><!-- 分别指定RM的地址。因为他们都要占用大量资源,可以把namenode和resourcemanager分开到不同的服务器上 --><property><name>yarn.resourcemanager.hostname.rm1</name><value>hd100</value></property><property><name>yarn.resourcemanager.hostname.rm2</name><value>hd120</value></property><property><name>yarn.resourcemanager.recovery.enabled</name><value>true</value></property><property><name>yarn.resourcemanager.store.class</name><value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value></property><!-- 指定zk集群地址 --><property><name>yarn.resourcemanager.zk-address</name><value>hd100:2181,hd110:2181,hd120:2181</value></property><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><property><name>yarn.application.classpath</name><value>/home/hadoop/hadoop/etc/hadoop,/home/hadoop/hadoop/share/hadoop/common/lib/*,/home/hadoop/hadoop/share/hadoop/common/*,/home/hadoop/hadoop/share/hadoop/hdfs,/home/hadoop/hadoop/share/hadoop/hdfs/lib/*,/home/hadoop/hadoop/share/hadoop/hdfs/*,/home/hadoop/hadoop/share/hadoop/mapreduce/lib/*,/home/hadoop/hadoop/share/hadoop/mapreduce/*,/home/hadoop/hadoop/share/hadoop/yarn,/home/hadoop/hadoop/share/hadoop/yarn/lib/*,/home/hadoop/hadoop/share/hadoop/yarn/*</value></property></configuration>
配置workers
vi /home/hadoop/hadoop/etc/hadoop/workers
hd100
hd110
hd120
以上配置可以在hd100配置好后,复制到其它节点:
[root@hd100 hadoop]# scp -r /home/hadoop/hadoop/etc/hadoop hd110:/home/hadoop/hadoop/etc
[root@hd100 hadoop]# scp -r /home/hadoop/hadoop/etc/hadoop hd120:/home/hadoop/hadoop/etc
初始化并启动集群
启动前配置操作用户:
对于start-dfs.sh和stop-dfs.sh文件,添加下列参数:
cd /home/hadoop/hadoop/sbin
#!/usr/bin/env bash
HDFS_DATANODE_USER=root
HDFS_DATANODE_SECURE_USER=hdfs
HDFS_NAMENODE_USER=root
HDFS_SECONDARYNAMENODE_USER=root
HDFS_JOURNALNODE_USER=root
HDFS_ZKFC_USER=root
对于start-yarn.sh和stop-yarn.sh文件,添加下列参数:
#!/usr/bin/env bash
YARN_RESOURCEMANAGER_USER=root
HADOOP_SECURE_DN_USER=yarn
YARN_NODEMANAGER_USER=root
注意:严格按照下面的步骤
1 、 启动zookeeper集群
/home/zookeeper/bin/zkServer.sh start
/home/zookeeper/bin/zkServer.sh status #3个节点都启动后,查看状态
2、启动journalnode
Namenode和datanode上执行启动命令都可以,自动启动三个workers节点:
hdfs --workers --daemon start journalnode
或者
/home/hadoop/hadoop/sbin/hadoop-daemons.sh start journalnode
[root@hd100 bin]# jps
1811 Jps
1526 QuorumPeerMain
1770 JournalNode
3、 格式化HDFS
第一次启动需要格式化,后面启动不再需要。
格式化会根据 core-site.xml
中的hadoop.tmp.dir
配置生成一个目录。如果之前有格式化过,那么先删除所有节点的该目录,比如我这里配置的是/home/hadoop/hadoop/tmp/${user.name}
,我之前有格式化过,那么需要先删除所有结点的该目录,在三个节点上执行:
rm -rf /home/hadoop/hadoop/tmp
rm -rf /home/hadoop/hadoop/data*
rm -rf /home/hadoop/hadoop/logs
在hmaster1(hd100)上执行命令:
hdfs namenode -format
格式化后会在根据hdfs-site.xml
中的dfs.namenode.name.dir
配置生成个文件夹及原数据,拷贝原数据到 hmaster2(hd110)
...
INFO common.Storage: Storage directory /home/hadoop/hadoop/data01/mycluster has been successfully formatted.
...
scp -r /home/hadoop/hadoop/data01 hd110:/home/hadoop/hadoop/data01/
4、 格式化zookeeper(在hd100上执行即可)
同样,第一次启动需要格式化,后面启动不再需要
hdfs zkfc -formatZK
...
INFO ha.ActiveStandbyElector: Successfully created /hadoop-ha/mycluster in ZK.
...
5、 启动HDFS(在hd100上执行)
/home/hadoop/hadoop/sbin/start-dfs.sh
6、 启动YARN(是在yarn-site.xml 中配置的服务上执行start-yarn.sh)(在hd100上执行即可)
/home/hadoop/hadoop/sbin/start-yarn.sh
如果namenode
和resourcemanager
在同一台机器上,启动hdfs
和 yarn
也可以用一条命令 start-all.sh
来启动;如果 namenode
和resourcemanager
分开了建议分成两步启动。
7、查看resourcemanager状态
[root@hd100 ~]# yarn rmadmin -getServiceState rm1
active
[root@hd100 ~]# yarn rmadmin -getServiceState rm2
standby
[root@hd100 ~]# yarn rmadmin -transitionToStandby rm1 --forcemanual #强制转换指令
8、检查启动情况
[root@hd100 ~]# jps | grep -v Jps
1968 DataNode
2848 ResourceManager
1826 NameNode
1144 QuorumPeerMain
1353 JournalNode
2986 NodeManager
2459 DFSZKFailoverController
[root@hd110 ~]# jps | grep -v Jps
1760 DFSZKFailoverController
1137 QuorumPeerMain
1506 DataNode
1891 NodeManager
1290 JournalNode
1439 NameNode
[root@hd120 ~]# jps | grep -v Jps
1617 ResourceManager
1682 NodeManager
1110 QuorumPeerMain
1256 JournalNode
1407 DataNode
测试集群
启动完成后浏览器访问:
-
http://192.168.26.100:50070/
namenode
处于standby
状态
-
http://192.168.26.110:50070/
namenode
处于active
状态
- http://192.168.26.100:8088/
- 测试集群的高可用性
用kill
命令强制结束正处于active
的namenode
(从上可知是hd110
)
[root@hd110 ~]# jps | grep -v Jps
1760 DFSZKFailoverController
1137 QuorumPeerMain
1506 DataNode
1891 NodeManager
1290 JournalNode
1439 NameNode
[root@hd110 ~]# kill -9 1439
刷新刚刚处于standby
状态的namenode
的50070
页面,可以看到该节点变成active
了!
也可以用hadoop jar
命令运行自带的jar
包来测试,在运行过程中用kill -9 namenode的进程号
来强制杀死active
的namenode
,如果仍然能正常运行且结果正确,说明hadoop
高可用集群完美搭建成功!
手动启动hd110
的namenode
:
[root@hd110 ~]# jps | grep -v Jps
1760 DFSZKFailoverController
1137 QuorumPeerMain
1506 DataNode
1891 NodeManager
1290 JournalNode
[root@hd110 ~]# hadoop-daemon.sh start namenode
[root@hd110 ~]# jps | grep -v Jps
1760 DFSZKFailoverController
1137 QuorumPeerMain
1506 DataNode
1891 NodeManager
1290 JournalNode
2701 NameNode
观察hd110
状态为standby
主备切换
[root@hd100 ~]# hdfs haadmin -failover hmaster1 hmaster2
Failover to NameNode at hd110/192.168.26.110:53310 successful
观察:hmaster2
(hd110)状态为acitve
观察:hmaster1
(hd100)状态为standby
执行MR
- 创建测试数据文件
[root@hd120 /]# mkdir test
[root@hd120 /]# vi /test/test.dat
java hadoop c++ python docker kubernetes redhat centos springboot springcloud java hadoop c++ python docker kubernetes redhat centos springboot springcloud spring cloud master hadoop worker node namenode master worker
- 创建hdfs目录:/input,并put数据文件
[root@hd120 /]# hdfs dfs -mkdir /input
[root@hd120 /]# hdfs dfs -put /test/test.dat /input
[root@hd120 /]# hdfs dfs -ls /input
Found 1 items
-rw-r--r-- 3 root supergroup 218 2020-10-23 11:00 /input/test.dat
[root@hd120 /]# hdfs dfs -cat /input/test.dat
2020-10-23 11:01:08,444 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
java hadoop c++ python docker kubernetes redhat centos springboot springcloud java hadoop c++ python docker kubernetes redhat centos springboot springcloud spring cloud master hadoop worker node namenode master worker
- 执行
hadoop jar /home/hadoop/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.2.1.jar wordcount /input/test.dat /output
执行过程输出:(如果出错,请参考后文的出错处理方法)
...
2020-10-23 11:05:58,672 INFO mapreduce.Job: map 100% reduce 100%
2020-10-23 11:05:59,702 INFO mapreduce.Job: Job job_1603414833398_0005 completed successfully
2020-10-23 11:05:59,868 INFO mapreduce.Job: Counters: 54File System Counters...Job Counters...Map-Reduce Framework...Shuffle Errors...File Input Format Counters...File Output Format Counters...
查看结果:
[root@hd120 /]# hdfs dfs -ls /output
Found 2 items
-rw-r--r-- 3 root supergroup 0 2020-10-23 11:05 /output/_SUCCESS
-rw-r--r-- 3 root supergroup 151 2020-10-23 11:05 /output/part-r-00000
[root@hd120 /]# hdfs dfs -cat /output/part-r-00000
2020-10-23 11:07:43,516 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
c++ 2
centos 2
cloud 1
docker 2
hadoop 3
java 2
kubernetes 2
master 2
namenode 1
node 1
python 2
redhat 2
spring 1
springboot 2
springcloud 2
worker 2
集群启动和关闭顺序
1、启动集群
三台机器先启动 zookeeper 集群
zkServer.sh start
master机器上先启动 hdfs,再启动yarn (hbase最后启动)
start-dfs.sh
start-yarn.sh
start-hbase.sh
以上两句可以用 start-all.sh
一并启动,但是最好分步启动。
需要的话可以启动history
服务:
mr-jobhistory-daemon.sh start historyserver
2、关闭集群
master 机器上先停止yarn,再停止hdfs (如果启动了hbase则先停止hbase)
stop-hbase.sh
stop-yarn.sh
stop-dfs.sh
或
stop-all.sh
三台机器关闭 zookeeper 集群
zkServer.sh stop
运行自带的计算pi值程序时出错及处理
cd /home/hadoop/hadoop/share/hadoop/mapreduce
[root@hd120 mapreduce]# hadoop jar hadoop-mapreduce-examples-3.2.1.jar pi 5 5
出错截图:(最后部分)
在yarn的管理界面(http://192.168.26.100:8088)上查看运行日志发现如下错误:
...ERROR [Listener at 0.0.0.0/44007] org.apache.hadoop.mapreduce.v2.app.MRAppMaster: Error starting MRAppMaster
org.apache.hadoop.yarn.exceptions.YarnRuntimeException: java.lang.NullPointerExceptionat org.apache.hadoop.mapreduce.v2.app.rm.RMCommunicator.register(RMCommunicator.java:178)at org.apache.hadoop.mapreduce.v2.app.rm.RMCommunicator.serviceStart(RMCommunicator.java:122)at org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator.serviceStart(RMContainerAllocator.java:280)at org.apache.hadoop.service.AbstractService.start(AbstractService.java:194)at org.apache.hadoop.mapreduce.v2.app.MRAppMaster$ContainerAllocatorRouter.serviceStart(MRAppMaster.java:979)at org.apache.hadoop.service.AbstractService.start(AbstractService.java:194)at org.apache.hadoop.service.CompositeService.serviceStart(CompositeService.java:121)at org.apache.hadoop.mapreduce.v2.app.MRAppMaster.serviceStart(MRAppMaster.java:1293)at org.apache.hadoop.service.AbstractService.start(AbstractService.java:194)at org.apache.hadoop.mapreduce.v2.app.MRAppMaster$6.run(MRAppMaster.java:1761)at java.security.AccessController.doPrivileged(Native Method)at javax.security.auth.Subject.doAs(Subject.java:422)at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1730)at org.apache.hadoop.mapreduce.v2.app.MRAppMaster.initAndStartAppMaster(MRAppMaster.java:1757)at org.apache.hadoop.mapreduce.v2.app.MRAppMaster.main(MRAppMaster.java:1691)
Caused by: java.lang.NullPointerExceptionat org.apache.hadoop.mapreduce.v2.app.client.MRClientService.getHttpPort(MRClientService.java:177)at org.apache.hadoop.mapreduce.v2.app.rm.RMCommunicator.register(RMCommunicator.java:159)... 14 more
INFO [Listener at 0.0.0.0/44007] org.apache.hadoop.util.ExitUtil: Exiting with status 1: org.apache.hadoop.yarn.exceptions.YarnRuntimeException: java.lang.NullPointerException
管理界面查看方法:
点击报错ID,进入:
点击对应的Logs:
http://hd100:8042/node/containerlogs/container_e02_1603414833398_0001_01_000001/root
将had100换成IP:192.168.26.100即可打开页面:
点击syslog:
原因:大概是 MRClientService 的 WebApp 创建过程出错,导致 WebApp 对象为 null,后边调用了 WebApp 的 getHttpPort() 方法,导致空指针。
解决方法:一种是修改源码重新编译生成 class 文件(比较麻烦),简单的方法就是直接在 yarn-site.xml 文件中添加:
vi /home/hadoop/hadoop/etc/hadoop/yarn-site.xml
<property><name>yarn.resourcemanager.webapp.address.rm1</name><value>hd100:8088</value></property><property><name>yarn.resourcemanager.webapp.address.rm2</name><value>hd120:8088</value></property>
hd100和hd120为已配置的 ResourceManager 节点(hd100、hd120)。加上后正常运行!
[root@hd120 mapreduce]# hadoop jar hadoop-mapreduce-examples-3.2.1.jar pi 5 5
...
INFO mapreduce.Job: map 100% reduce 100%
INFO mapreduce.Job: Job job_1603414833398_0002 completed successfullyINFO mapreduce.Job: Counters: 54File System Counters...Job Counters...Map-Reduce Framework...Shuffle Errors...File Input Format Counters...File Output Format Counters...
Job Finished in 129.214 seconds
...
Estimated value of Pi is 3.68000000000000000000
配置HBase
安装目录:/home/hadoop/hbase
[root@hd100 ~]# cd /opt/src
[root@hd100 src]# tar -zxvf hbase-2.2.5-bin.tar.gz -C /home/hadoop/
[root@hd100 src]# cd /home/hadoop/
[root@hd100 hadoop]# mv hbase-2.2.5 hbase
配置环境变量
参见前文。
配置hbase-env.sh
在hmaster1(hd100)上操作:
[root@hd100 hadoop]# vi /home/hadoop/hbase/conf/hbase-env.sh
export JAVA_HOME=/home/hadoop/jdk8
export HADOOP_HOME=/home/hadoop/hadoop
export HBASE_HOME=/home/hadoop/hbase
#关闭自身zookeeper,采用外部的zookeeper
export HBASE_MANAGES_ZK=false
#The directory where pid files are stored. /tmp by default.
export HBASE_PID_DIR=/home/hadoop/hbase/pids
配置hbase-site.xml
[root@hd100 hadoop]# vi /home/hadoop/hbase/conf/hbase-site.xml
<!-- hadoop集群名称 --><property><name>hbase.rootdir</name><value>hdfs://mycluster/hbase</value></property><property><name>hbase.zookeeper.quorum</name><value>hd100,hd110,hd120</value></property><property><name>hbase.zookeeper.property.clientPort</name><value>2181</value></property><!-- 是否是完全分布式 --><property><name>hbase.cluster.distributed</name><value>true</value></property><!-- 完全分布式必须为false --><property><name>hbase.unsafe.stream.capability.enforce</name><value>false</value></property><!-- 指定缓存文件存储的路径 --><property><name>hbase.tmp.dir</name><value>/home/hadoop/hadoop/data01/hbase/hbase_tmp</value></property><!-- 指定Zookeeper数据存储的路径 --><property><name>hbase.zookeeper.property.dataDir</name><value>/home/hadoop/hadoop/data01/hbase/zookeeper_data</value></property>
注意:$HBASE_HOME/conf/hbase-site.xml
的hbase.rootdir
的value
值(包括主机和端口号)与$HADOOP_HOME/conf/core-site.xml
的fs.default.name
的value
值(包括主机和端口号)一致
配置regionservers
修改文件:/home/hadoop/hbase/conf/regionservers。
[root@hd100 hadoop]# vi /home/hadoop/hbase/conf/regionservers
添加DataNode的IP或者主机名即可,这个文件把RegionServer的节点列了下来,内容为:
hd100
hd110
hd120
配置HMaster高可用
为了保证HBase集群的高可靠性,HBase支持多Backup Master 设置。当Active Master挂掉后,Backup Master可以自动接管整个HBase的集群。
该配置极其简单:在 $HBASE_HOME/conf/目录下新增文件配置backup-masters:
[root@hd100 hadoop]# vi /home/hadoop/hbase/conf/backup-masters
在其内添加要用做Backup Master的节点hostname。
hd110
没设置backup-masters之前启动hbase, 只有一台有启动了HMaster进程;
完成之后,重新启动整个集群,我们会发现,在backup-masters清单上的主机,都启动了HMaster进程。
log4j冲突处理
启动hbase时会报错:
[root@hd100 hadoop]# /home/hadoop/hbase/bin/start-hbase.sh
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/home/hadoop/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/hadoop/hbase/lib/client-facing-thirdparty/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
running master, logging to /home/hadoop/hbase/logs/hbase-root-master-hd100.out
hd110: running regionserver, logging to /home/hadoop/hbase/logs/hbase-root-regionserver-hd110.out
hd120: running regionserver, logging to /home/hadoop/hbase/logs/hbase-root-regionserver-hd120.out
hd100: running regionserver, logging to /home/hadoop/hbase/logs/hbase-root-regionserver-hd100.out
hd110: running master, logging to /home/hadoop/hbase/logs/hbase-root-master-hd110.out
原因是有两个log4j
的jar
起了冲突,只需要删除其中一个:
mv /home/hadoop/hbase/lib/client-facing-thirdparty/slf4j-log4j12-1.7.25.jar /home/hadoop/hbase/lib/client-facing-thirdparty/slf4j-log4j12-1.7.25.jar.bak
将hbase目录复制到其他节点
复制hd100的hbase目录到hd110、hd120:
[root@hd100 hadoop]# scp -r /home/hadoop/hbase/ hd110:/home/hadoop/
[root@hd100 hadoop]# scp -r /home/hadoop/hbase/ hd120:/home/hadoop/
至此Hbase完美配置成功!
启动/停止hbase
在安装完成zookeeper、hadoop、hbase后,基本的数据仓库框架算是搭建好了,接下来就是将启动,使之运行工作。
启动顺序要求且必须是这样:zookeeper
-->hadoop
-->hbase
- 启动hbase
按照前面启动hadoop ha的顺序先启动好zookeeper
、hadoop
/home/hadoop/hbase/bin/start-hbase.sh
[root@hd100 hadoop]# /home/hadoop/hbase/bin/start-hbase.sh
running master, logging to /home/hadoop/hbase/logs/hbase-root-master-hd100.out
hd120: running regionserver, logging to /home/hadoop/hbase/logs/hbase-root-regionserver-hd120.out
hd100: running regionserver, logging to /home/hadoop/hbase/logs/hbase-root-regionserver-hd100.out
hd110: running regionserver, logging to /home/hadoop/hbase/logs/hbase-root-regionserver-hd110.out
hd110: running master, logging to /home/hadoop/hbase/logs/hbase-root-master-hd110.out
hd100和hd110上HMaster进程已经启动:
[root@hd100 hadoop]# jps | grep -v Jps
1968 DataNode
2848 ResourceManager
1826 NameNode
1144 QuorumPeerMain
1353 JournalNode
2986 NodeManager
2459 DFSZKFailoverController
8683 HMaster
8844 HRegionServer
[root@hd110 ~]# jps | grep -v Jps
1760 DFSZKFailoverController
5056 HMaster
1137 QuorumPeerMain
1506 DataNode
1891 NodeManager
4918 HRegionServer
1290 JournalNode
2701 NameNode
[root@hd120 /]# jps | grep -v Jps
1617 ResourceManager
1682 NodeManager
1110 QuorumPeerMain
1256 JournalNode
4333 HRegionServer
1407 DataNode
- 停止hbase
/home/hadoop/hbase/bin/stop-hbase.sh
- Hbase web :http://192.168.26.100:16010
HBase常用命令
Common
[root@hd100 hadoop]# hbase shell
HBase Shell
Use "help" to get list of supported commands.
Use "exit" to quit this interactive shell.
For Reference, please visit: http://hbase.apache.org/2.0/book.html#shell
Version 2.2.5, rf76a601273e834267b55c0cda12474590283fd4c, 2020年 05月 21日 星期四 18:34:40 CST
Took 0.0033 seconds
hbase(main):001:0> help
HBase Shell, version 2.2.5, rf76a601273e834267b55c0cda12474590283fd4c, 2020年 05月 21日 星期四 18:34:40 CST
Type 'help "COMMAND"', (e.g. 'help "get"' -- the quotes are necessary) for help on a specific command.
Commands are grouped. Type 'help "COMMAND_GROUP"', (e.g. 'help "general"') for help on a command group.COMMAND GROUPS:Group name: generalCommands: processlist, status, table_help, version, whoamiGroup name: ddlCommands: alter, alter_async, alter_status, clone_table_schema, create, describe, disable, disable_all, drop, drop_all, enable, enable_all, exists, get_table, is_disabled, is_enabled, list, list_regions, locate_region, show_filtersGroup name: namespaceCommands: alter_namespace, create_namespace, describe_namespace, drop_namespace, list_namespace, list_namespace_tablesGroup name: dmlCommands: append, count, delete, deleteall, get, get_counter, get_splits, incr, put, scan, truncate, truncate_preserveGroup name: toolsCommands: assign, balance_switch, balancer, balancer_enabled, catalogjanitor_enabled, catalogjanitor_run, catalogjanitor_switch, cleaner_chore_enabled, cleaner_chore_run, cleaner_chore_switch, clear_block_cache, clear_compaction_queues, clear_deadservers, close_region, compact, compact_rs, compaction_state, compaction_switch, decommission_regionservers, flush, hbck_chore_run, is_in_maintenance_mode, list_deadservers, list_decommissioned_regionservers, major_compact, merge_region, move, normalize, normalizer_enabled, normalizer_switch, recommission_regionserver, regioninfo, rit, split, splitormerge_enabled, splitormerge_switch, stop_master, stop_regionserver, trace, unassign, wal_roll, zk_dumpGroup name: replicationCommands: add_peer, append_peer_exclude_namespaces, append_peer_exclude_tableCFs, append_peer_namespaces, append_peer_tableCFs, disable_peer, disable_table_replication, enable_peer, enable_table_replication, get_peer_config, list_peer_configs, list_peers, list_replicated_tables, remove_peer, remove_peer_exclude_namespaces, remove_peer_exclude_tableCFs, remove_peer_namespaces, remove_peer_tableCFs, set_peer_bandwidth, set_peer_exclude_namespaces, set_peer_exclude_tableCFs, set_peer_namespaces, set_peer_replicate_all, set_peer_serial, set_peer_tableCFs, show_peer_tableCFs, update_peer_configGroup name: snapshotsCommands: clone_snapshot, delete_all_snapshot, delete_snapshot, delete_table_snapshots, list_snapshots, list_table_snapshots, restore_snapshot, snapshotGroup name: configurationCommands: update_all_config, update_configGroup name: quotasCommands: disable_exceed_throttle_quota, disable_rpc_throttle, enable_exceed_throttle_quota, enable_rpc_throttle, list_quota_snapshots, list_quota_table_sizes, list_quotas, list_snapshot_sizes, set_quotaGroup name: securityCommands: grant, list_security_capabilities, revoke, user_permissionGroup name: proceduresCommands: list_locks, list_proceduresGroup name: visibility labelsCommands: add_labels, clear_auths, get_auths, list_labels, set_auths, set_visibilityGroup name: rsgroupCommands: add_rsgroup, balance_rsgroup, get_rsgroup, get_server_rsgroup, get_table_rsgroup, list_rsgroups, move_namespaces_rsgroup, move_servers_namespaces_rsgroup, move_servers_rsgroup, move_servers_tables_rsgroup, move_tables_rsgroup, remove_rsgroup, remove_servers_rsgroup, rename_rsgroupSHELL USAGE:
Quote all names in HBase Shell such as table and column names. Commas delimit
command parameters. Type <RETURN> after entering a command to run it.
Dictionaries of configuration used in the creation and alteration of tables are
Ruby Hashes. They look like this:{'key1' => 'value1', 'key2' => 'value2', ...}and are opened and closed with curley-braces. Key/values are delimited by the
'=>' character combination. Usually keys are predefined constants such as
NAME, VERSIONS, COMPRESSION, etc. Constants do not need to be quoted. Type
'Object.constants' to see a (messy) list of all constants in the environment.If you are using binary keys or values and need to enter them in the shell, use
double-quote'd hexadecimal representation. For example:hbase> get 't1', "key\x03\x3f\xcd"hbase> get 't1', "key\003\023\011"hbase> put 't1', "test\xef\xff", 'f1:', "\x01\x33\x40"The HBase shell is the (J)Ruby IRB with the above HBase-specific commands added.
For more on the HBase Shell, see http://hbase.apache.org/book.html
hbase(main):002:0> exit
DDL
-
创建表:create ‘firstTable’,‘cf1’, ‘cf2’
使用create命令创建一个表,必须指出表名和ColumnFamily名(列族名)hbase(main):002:0> create 'firstTable','cf1', 'cf2' Created table firstTable Took 3.4291 seconds => Hbase::Table - firstTable
-
列出表清单:list
hbase(main):003:0> list TABLE firstTable 1 row(s) Took 0.0350 seconds => ["firstTable"]
-
查看指定的表:list ‘firstTable’
hbase(main):004:0> list 'firstTable' TABLE firstTable 1 row(s) Took 0.0263 seconds => ["firstTable"]
-
展示一个表的详细信息:describe ‘firstTable’
hbase(main):005:0> describe 'firstTable' Table firstTable is ENABLED firstTable COLUMN FAMILIES DESCRIPTION {NAME => 'cf1', VERSIONS => '1', EVICT_BLOCKS_ON_CLOSE => 'false', NEW_VERSION_BEHAVIOR => 'false', KEEP_DELETED_CELLS => 'FALSE', CACHE_DATA_ON_WRIT E => 'false', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', REPLICATION_SCOPE => '0', BLOOMFILTER => 'ROW', CACHE_INDEX_ON_WR ITE => 'false', IN_MEMORY => 'false', CACHE_BLOOMS_ON_WRITE => 'false', PREFETCH_BLOCKS_ON_OPEN => 'false', COMPRESSION => 'NONE', BLOCKCACHE => 'tru e', BLOCKSIZE => '65536'}{NAME => 'cf2', VERSIONS => '1', EVICT_BLOCKS_ON_CLOSE => 'false', NEW_VERSION_BEHAVIOR => 'false', KEEP_DELETED_CELLS => 'FALSE', CACHE_DATA_ON_WRIT E => 'false', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', REPLICATION_SCOPE => '0', BLOOMFILTER => 'ROW', CACHE_INDEX_ON_WR ITE => 'false', IN_MEMORY => 'false', CACHE_BLOOMS_ON_WRITE => 'false', PREFETCH_BLOCKS_ON_OPEN => 'false', COMPRESSION => 'NONE', BLOCKCACHE => 'tru e', BLOCKSIZE => '65536'}2 row(s)QUOTAS 0 row(s) Took 0.3599 seconds
-
禁用表:disable ‘firstTable’
-
启用表:enable ‘firstTable’
-
查看是否启用/禁用: is_enabled/is_disabled
-
删除表:先禁用再 drop ‘tablemame’
-
查看命名空间:list_namespace
DML
-
插入记录:put ‘firstTable’,‘rowkey’,‘cf:key’,‘value’
put 'firstTable', 'row1', 'cf1', 'row1cf1value' put 'firstTable', 'row1', 'cf2', 'row1c21value' put 'firstTable', 'row2', 'cf1', 'row2cf1value' put 'firstTable', 'row2', 'cf2', 'row2c21value'
-
获取记录:get ‘firstTable’,‘rowkey’,‘cf:key’
get 'firstTable','row1','cf1' get 'firstTable','row2','cf1'
hbase(main):015:0> get 'firstTable','row1','cf1' COLUMN CELLcf1: timestamp=1603442998773, value=row1cf1value 1 row(s) Took 0.0608 seconds hbase(main):016:0> get 'firstTable','row2','cf1' COLUMN CELLcf1: timestamp=1603443068461, value=row2cf1value 1 row(s) Took 0.0243 seconds
-
查看/扫描记录:scan ‘firstTable’
hbase(main):014:0> scan 'firstTable' ROW COLUMN+CELLrow1 column=cf1:, timestamp=1603442998773, value=row1cf1valuerow1 column=cf2:, timestamp=1603443024500, value=row1c21valuerow2 column=cf1:, timestamp=1603443068461, value=row2cf1valuerow2 column=cf2:, timestamp=1603443082622, value=row2c21value 2 row(s) Took 0.3387 seconds
-
修改数据:put ‘table’,‘rowkey’,‘列名’,‘修改后的值’
hbase(main):023:0> put 'firstTable','row1','cf1','abcd-row1cf1value' Took 0.0327 seconds hbase(main):024:0> get 'firstTable','row1','cf1' COLUMN CELLcf1: timestamp=1603443850892, value=abcd-row1cf1value 1 row(s) Took 0.0241 seconds hbase(main):025:0> scan 'firstTable' ROW COLUMN+CELLrow1 column=cf1:, timestamp=1603443850892, value=abcd-row1cf1valuerow1 column=cf2:, timestamp=1603443024500, value=row1c21valuerow2 column=cf1:, timestamp=1603443068461, value=row2cf1valuerow2 column=cf2:, timestamp=1603443082622, value=row2c21value 2 row(s) Took 0.1077 seconds