前面介绍了ggplot2的图层(layers),接下来几篇会系统较深入的介绍ggplot2图层图形语法(the Grammar of Graphics),不纠结某一种图的具体绘制方法,不纠结某一个参数的具体设置,这些都交给帮助文档。
本文目录
1、ggplot2图层图形语法(the Grammar of Graphics)的益处
2、图层图形语法(the Grammar of Graphics)中一张图组成?
图层(layer)介绍
ggplot2绘图模板
3、数据集(Data)
4、图像属性(aes)
1、ggplot2图层图形语法(the Grammar of Graphics)的益处
- The layered grammar is based on Wilkinson’s grammar of graphics , but adds a number of enhancements that help it to be more expressive and fit seamlessly into the R environment.
- It also encourages the use of graphics customised to a particular problem, rather than relying on specific chart types.
- The grammar makes it easier for you to iteratively update a plot, changing a single feature at a time.
- The grammar is also useful because it suggests the high-level aspects of a plot that can be changed, giving you a framework to think about graphics, and hopefully shortening the distance from mind to paper.
2、图层图形语法(the Grammar of Graphics)中一张图组成
- A default dataset and set of mappings from variables to aesthetics【数据集(data)和图像属性(aes)】.
- One or more layers, each composed of a geometric object, a statistical transformation, a position adjustment, and optionally, a dataset and aesthetic mappings【一或多个图层(layers):每个图层由数据集(data),图像属性(aes),统计变换(stat),几何对象(geom)和位置调整(position adjustment)组成】.
- One scale for each aesthetic mapping【标度(scale)】.
- A coordinate system【坐标系(coord)】.
- The facetting specification【分面(facet)】.
以上各部分体现在图中如下。
图层(layer)介绍
图层一般由以下五部分构成
> layer
function (
geom = NULL, #绘制什么图,例如散点图:geom = "point",
stat = NULL, #默认为“identity”, histograms和smoothers图时常用
data = NULL, #指定数据集
mapping = NULL, #aes()函数
position = NULL, #设置多个图之间相对位置,防折叠、设置堆叠等
..........)
{...............
}
了解layer函数会帮助更好理解图层图形语法的底层,不过一般绘图时,不会直接使用layer函数,而是使用阉割版的geom_系列函数添加图层,举个栗子。
library('gridExtra')
library('ggplot2')
options(repr.plot.width = 6, repr.plot.height = 3, repr.plot.res = 300)
#创建一个画布,包含坐标轴和数据信息
p1 <- ggplot(mpg, aes(displ, hwy))#geom_系列函数添加散点图(geom_point()图层
p2 <- p1 + geom_point()+ggtitle('By geom_point()')#geom_point()是捷径,实际上后台调用layer()函数以创建一个散点图图层
p3 <- p1 + layer(mapping = NULL, data = NULL,geom = "point", #指定散点图stat = "identity",position = "identity"
)+ggtitle('By layer()')p4 <- grid.arrange(p2,p3,nrow = 1)
ggsave("scale11.png", p4, width = 6, height = 3)
可以看出效果一模一样。
ggplot2绘图模板
3、数据集(Data)
ggplot2中对干净数据定义为: variables in the columns and observations in the rows【每一列为一个变量,每一行为一个观测】,可以通过控制数据集以突出想要突出展示的数据。
library(dplyr)
options(repr.plot.width = 4.5, repr.plot.height = 3.5, repr.plot.res = 300)
mod <- loess(hwy ~ displ, data = mpg)
grid <- data_frame(displ = seq(min(mpg$displ), max(mpg$displ), length = 50))
grid$hwy <- predict(mod, newdata = grid)#loess变换构建新data gridstd_resid <- resid(mod) / mod$s
outlier <- filter(mpg, abs(std_resid) > 2)#划分离散点ggplot(mpg, aes(displ, hwy)) + geom_point() + #添加散点图图形geom_line(data = grid) + #拟合曲线geom_text(data = outlier, aes(label = model))#离散点添加文本
4、图像属性(aes)
设置Colour, size, shape等等。
- 在ggplot和在图层中设置aes的区别
library(dplyr)
class <- mpg %>% group_by(class) %>% summarise(n = n(), hwy = mean(hwy))#以下四种方式按class绘制散点图效果一致。
#在ggplot中设置aes
ggplot(mpg, aes(displ, hwy, colour = class)) + geom_point()ggplot(mpg, aes(displ, hwy)) + geom_point(aes(colour = class))#在图层中设置aes
ggplot(mpg, aes(displ)) + geom_point(aes(y = hwy, colour = class))ggplot(mpg) + geom_point(aes(displ, hwy, colour = class))
- aes内和外设置参数的区别
options(repr.plot.width = 6, repr.plot.height = 3.5, repr.plot.res = 300)p1 <- ggplot(mpg, aes(cty, hwy)) + geom_point(colour = "darkblue")
#if you want override the default size or colour, put the value outside of aes().p2 <- ggplot(mpg, aes(cty, hwy)) + geom_point(aes(colour = "darkblue"))
# If you want appearance to be governed by a variable, put the specification inside aes()p3 <- ggplot(mpg, aes(cty, hwy)) + geom_point(aes(colour = "darkblue")) + scale_colour_identity()p4 <- ggplot(mpg, aes(displ, hwy)) + geom_point() +geom_smooth(aes(colour = "loess"), method = "loess", se = FALSE) + geom_smooth(aes(colour = "lm"), method = "lm", se = FALSE) +labs(colour = "Method")p5 <- grid.arrange(p1,p2,p3,p4,nrow = 2)
ggsave("scale11.png", p4, width = 6, height = 3)
本文结束,更多好文,欢迎关注:pythonic生物人
- Python可视化|Matplotlib39-Matplotlib 1.4W+字教程(珍藏版)
Python可视化|Matplotlib&Seaborn36(完结篇)
python3基础12详解模块和包(库)|构建|使用
Perl基础系列合集
NGS各种组学建库原理(图解)