https://blog.csdn.net/qq_29411737/article/details/80835658
JDK1.8 新特性
本文主要介绍了JDK1.8版本中的一些新特性,乃作者视频观后笔记,仅供参考。
jdk1.8新特性知识点:
- Lambda表达式
- 函数式接口
- *方法引用和构造器调用
- Stream API
- 接口中的默认方法和静态方法
- 新时间日期API
在jdk1.8中对hashMap等map集合的数据结构优化。hashMap数据结构的优化
原来的hashMap采用的数据结构是哈希表(数组+链表),hashMap默认大小是16,一个0-15索引的数组,如何往里面存储元素,首先调用元素的hashcode
方法,计算出哈希码值,经过哈希算法算成数组的索引值,如果对应的索引处没有元素,直接存放,如果有对象在,那么比较它们的equals方法比较内容
如果内容一样,后一个value会将前一个value的值覆盖,如果不一样,在1.7的时候,后加的放在前面,形成一个链表,形成了碰撞,在某些情况下如果链表
无限下去,那么效率极低,碰撞是避免不了的
加载因子:0.75,数组扩容,达到总容量的75%,就进行扩容,但是无法避免碰撞的情况发生
在1.8之后,在数组+链表+红黑树来实现hashmap,当碰撞的元素个数大于8时 & 总容量大于64,会有红黑树的引入
除了添加之后,效率都比链表高,1.8之后链表新进元素加到末尾
ConcurrentHashMap (锁分段机制),concurrentLevel,jdk1.8采用CAS算法(无锁算法,不再使用锁分段),数组+链表中也引入了红黑树的使用
Lambda表达式
lambda表达式本质上是一段匿名内部类,也可以是一段可以传递的代码
先来体验一下lambda最直观的优点:简洁代码
//匿名内部类Comparator<Integer> cpt = new Comparator<Integer>() {@Overridepublic int compare(Integer o1, Integer o2) {return Integer.compare(o1,o2);}};TreeSet<Integer> set = new TreeSet<>(cpt);System.out.println("=========================");//使用lambda表达式Comparator<Integer> cpt2 = (x,y) -> Integer.compare(x,y);TreeSet<Integer> set2 = new TreeSet<>(cpt2);
只需要一行代码,极大减少代码量!!
这样一个场景,在商城浏览商品信息时,经常会有条件的进行筛选浏览,例如要选颜色为红色的、价格小于8000千的….
// 筛选颜色为红色
public List<Product> filterProductByColor(List<Product> list){List<Product> prods = new ArrayList<>();for (Product product : list){if ("红色".equals(product.getColor())){prods.add(product);}}return prods;}// 筛选价格小于8千的
public List<Product> filterProductByPrice(List<Product> list){List<Product> prods = new ArrayList<>();for (Product product : list){if (product.getPrice() < 8000){prods.add(product);}}return prods;}
我们发现实际上这些过滤方法的核心就只有if语句中的条件判断,其他均为模版代码,每次变更一下需求,都需要新增一个方法,然后复制黏贴,假设这个过滤方法有几百行,那么这样的做法难免笨拙了一点。如何进行优化呢?
优化一:使用设计模式
定义一个MyPredicate接口
public interface MyPredicate <T> {boolean test(T t);
}
如果想要筛选颜色为红色的商品,定义一个颜色过滤类
public class ColorPredicate implements MyPredicate <Product> {private static final String RED = "红色";@Overridepublic boolean test(Product product) {return RED.equals(product.getColor());}
定义过滤方法,将过滤接口当做参数传入,这样这个过滤方法就不用修改,在实际调用的时候将具体的实现类传入即可。
public List<Product> filterProductByPredicate(List<Product> list,MyPredicate<Product> mp){List<Product> prods = new ArrayList<>();for (Product prod : list){if (mp.test(prod)){prods.add(prod);}}return prods;}
例如,如果想要筛选价格小于8000的商品,那么新建一个价格过滤类既可
public class PricePredicate implements MyPredicate<Product> {@Overridepublic boolean test(Product product) {return product.getPrice() < 8000;}
}
这样实现的话可能有人会说,每次变更需求都需要新建一个实现类,感觉还是有点繁琐呀,那么再来优化一下
优化二:使用匿名内部类
定义过滤方法:
public List<Product> filterProductByPredicate(List<Product> list,MyPredicate<Product> mp){List<Product> prods = new ArrayList<>();for (Product prod : list){if (mp.test(prod)){prods.add(prod);}}return prods;}
调用过滤方法的时候:
// 按价格过滤
public void test2(){filterProductByPredicate(proList, new MyPredicate<Product>() {@Overridepublic boolean test(Product product) {return product.getPrice() < 8000;}});
}// 按颜色过滤public void test3(){filterProductByPredicate(proList, new MyPredicate<Product>() {@Overridepublic boolean test(Product product) {return "红色".equals(product.getColor());}});}
使用匿名内部类,就不需要每次都新建一个实现类,直接在方法内部实现。看到匿名内部类,不禁想起了Lambda表达式。
优化三:使用lambda表达式
定义过滤方法:
public List<Product> filterProductByPredicate(List<Product> list,MyPredicate<Product> mp){List<Product> prods = new ArrayList<>();for (Product prod : list){if (mp.test(prod)){prods.add(prod);}}return prods;}
使用lambda表达式进行过滤
@Test
public void test4(){List<Product> products = filterProductByPredicate(proList, (p) -> p.getPrice() < 8000);for (Product pro : products){System.out.println(pro);}}
优化四:使用Stream API
甚至不用定义过滤方法,直接在集合上进行操作
// 使用jdk1.8中的Stream API进行集合的操作
@Test
public void test(){// 根据价格过滤proList.stream().fliter((p) -> p.getPrice() <8000).limit(2).forEach(System.out::println);// 根据颜色过滤proList.stream().fliter((p) -> "红色".equals(p.getColor())).forEach(System.out::println);// 遍历输出商品名称proList.stream().map(Product::getName).forEach(System.out::println);
}
Lmabda表达式的语法总结: () -> ();
前置 | 语法 |
---|---|
无参数无返回值 | () -> System.out.println(“Hello WOrld”) |
有一个参数无返回值 | (x) -> System.out.println(x) |
有且只有一个参数无返回值 | x -> System.out.println(x) |
有多个参数,有返回值,有多条lambda体语句 | (x,y) -> {System.out.println(“xxx”);return xxxx;}; |
有多个参数,有返回值,只有一条lambda体语句 | (x,y) -> xxxx |
口诀:左右遇一省括号,左侧推断类型省
注:当一个接口中存在多个抽象方法时,如果使用lambda表达式,并不能智能匹配对应的抽象方法,因此引入了函数式接口的概念
函数式接口
函数式接口的提出是为了给Lambda表达式的使用提供更好的支持。
什么是函数式接口?
简单来说就是只定义了一个抽象方法的接口(Object类的public方法除外),就是函数式接口,并且还提供了注解:@FunctionalInterface
常见的四大函数式接口
- Consumer 《T》:消费型接口,有参无返回值
@Testpublic void test(){changeStr("hello",(str) -> System.out.println(str));}/*** Consumer<T> 消费型接口* @param str* @param con*/public void changeStr(String str, Consumer<String> con){con.accept(str);}
- Supplier 《T》:供给型接口,无参有返回值
@Testpublic void test2(){String value = getValue(() -> "hello");System.out.println(value);}/*** Supplier<T> 供给型接口* @param sup* @return*/public String getValue(Supplier<String> sup){return sup.get();}
- Function 《T,R》::函数式接口,有参有返回值
@Testpublic void test3(){Long result = changeNum(100L, (x) -> x + 200L);System.out.println(result);}/*** Function<T,R> 函数式接口* @param num* @param fun* @return*/public Long changeNum(Long num, Function<Long, Long> fun){return fun.apply(num);}
- Predicate《T》: 断言型接口,有参有返回值,返回值是boolean类型
public void test4(){boolean result = changeBoolean("hello", (str) -> str.length() > 5);System.out.println(result);}/*** Predicate<T> 断言型接口* @param str* @param pre* @return*/public boolean changeBoolean(String str, Predicate<String> pre){return pre.test(str);}
在四大核心函数式接口基础上,还提供了诸如BiFunction、BinaryOperation、toIntFunction等扩展的函数式接口,都是在这四种函数式接口上扩展而来的,不做赘述。
总结:函数式接口的提出是为了让我们更加方便的使用lambda表达式,不需要自己再手动创建一个函数式接口,直接拿来用就好了,贴
方法引用
若lambda体中的内容有方法已经实现了,那么可以使用“方法引用”
也可以理解为方法引用是lambda表达式的另外一种表现形式并且其语法比lambda表达式更加简单
(a) 方法引用
三种表现形式:
1. 对象::实例方法名
2. 类::静态方法名
3. 类::实例方法名 (lambda参数列表中第一个参数是实例方法的调用 者,第二个参数是实例方法的参数时可用)
public void test() {/***注意:* 1.lambda体中调用方法的参数列表与返回值类型,要与函数式接口中抽象方法的函数列表和返回值类型保持一致!* 2.若lambda参数列表中的第一个参数是实例方法的调用者,而第二个参数是实例方法的参数时,可以使用ClassName::method**/Consumer<Integer> con = (x) -> System.out.println(x);con.accept(100);// 方法引用-对象::实例方法Consumer<Integer> con2 = System.out::println;con2.accept(200);// 方法引用-类名::静态方法名BiFunction<Integer, Integer, Integer> biFun = (x, y) -> Integer.compare(x, y);BiFunction<Integer, Integer, Integer> biFun2 = Integer::compare;Integer result = biFun2.apply(100, 200);// 方法引用-类名::实例方法名BiFunction<String, String, Boolean> fun1 = (str1, str2) -> str1.equals(str2);BiFunction<String, String, Boolean> fun2 = String::equals;Boolean result2 = fun2.apply("hello", "world");System.out.println(result2);}
(b)构造器引用
格式:ClassName::new
public void test2() {// 构造方法引用 类名::newSupplier<Employee> sup = () -> new Employee();System.out.println(sup.get());Supplier<Employee> sup2 = Employee::new;System.out.println(sup2.get());// 构造方法引用 类名::new (带一个参数)Function<Integer, Employee> fun = (x) -> new Employee(x);Function<Integer, Employee> fun2 = Employee::new;System.out.println(fun2.apply(100));}
(c)数组引用
格式:Type[]::new
public void test(){// 数组引用Function<Integer, String[]> fun = (x) -> new String[x];Function<Integer, String[]> fun2 = String[]::new;String[] strArray = fun2.apply(10);Arrays.stream(strArray).forEach(System.out::println);
}
Stream API
Stream操作的三个步骤
- 创建stream
- 中间操作(过滤、map)
- 终止操作
stream的创建:
// 1,校验通过Collection 系列集合提供的stream()或者paralleStream()List<String> list = new ArrayList<>();Strean<String> stream1 = list.stream();// 2.通过Arrays的静态方法stream()获取数组流String[] str = new String[10];Stream<String> stream2 = Arrays.stream(str);// 3.通过Stream类中的静态方法ofStream<String> stream3 = Stream.of("aa","bb","cc");// 4.创建无限流// 迭代Stream<Integer> stream4 = Stream.iterate(0,(x) -> x+2);//生成Stream.generate(() ->Math.random());
Stream的中间操作:
/*** 筛选 过滤 去重*/emps.stream().filter(e -> e.getAge() > 10).limit(4).skip(4)// 需要流中的元素重写hashCode和equals方法.distinct().forEach(System.out::println);/*** 生成新的流 通过map映射*/emps.stream().map((e) -> e.getAge()).forEach(System.out::println);/*** 自然排序 定制排序*/emps.stream().sorted((e1 ,e2) -> {if (e1.getAge().equals(e2.getAge())){return e1.getName().compareTo(e2.getName());} else{return e1.getAge().compareTo(e2.getAge());}}).forEach(System.out::println);
Stream的终止操作:
/*** 查找和匹配* allMatch-检查是否匹配所有元素* anyMatch-检查是否至少匹配一个元素* noneMatch-检查是否没有匹配所有元素* findFirst-返回第一个元素* findAny-返回当前流中的任意元素* count-返回流中元素的总个数* max-返回流中最大值* min-返回流中最小值*//*** 检查是否匹配元素*/boolean b1 = emps.stream().allMatch((e) -> e.getStatus().equals(Employee.Status.BUSY));System.out.println(b1);boolean b2 = emps.stream().anyMatch((e) -> e.getStatus().equals(Employee.Status.BUSY));System.out.println(b2);boolean b3 = emps.stream().noneMatch((e) -> e.getStatus().equals(Employee.Status.BUSY));System.out.println(b3);Optional<Employee> opt = emps.stream().findFirst();System.out.println(opt.get());// 并行流Optional<Employee> opt2 = emps.parallelStream().findAny();System.out.println(opt2.get());long count = emps.stream().count();System.out.println(count);Optional<Employee> max = emps.stream().max((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()));System.out.println(max.get());Optional<Employee> min = emps.stream().min((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()));System.out.println(min.get());
还有功能比较强大的两个终止操作 reduce和collect
reduce操作: reduce:(T identity,BinaryOperator)/reduce(BinaryOperator)-可以将流中元素反复结合起来,得到一个值
/*** reduce :规约操作*/List<Integer> list = Arrays.asList(1,2,3,4,5,6,7,8,9,10);Integer count2 = list.stream().reduce(0, (x, y) -> x + y);System.out.println(count2);Optional<Double> sum = emps.stream().map(Employee::getSalary).reduce(Double::sum);System.out.println(sum);
collect操作:Collect-将流转换为其他形式,接收一个Collection接口的实现,用于给Stream中元素做汇总的方法
/*** collect:收集操作*/List<Integer> ageList = emps.stream().map(Employee::getAge).collect(Collectors.toList());ageList.stream().forEach(System.out::println);
并行流和串行流
在jdk1.8新的stream包中针对集合的操作也提供了并行操作流和串行操作流。并行流就是把内容切割成多个数据块,并且使用多个线程分别处理每个数据块的内容。Stream api中声明可以通过parallel()与sequential()方法在并行流和串行流之间进行切换。
jdk1.8并行流使用的是fork/join框架进行并行操作
ForkJoin框架
Fork/Join 框架:就是在必要的情况下,将一个大任务,进行拆分(fork)成若干个小任务(拆到不可再拆时),再将一个个的小任务运算的结果进行 join 汇总。
关键字:递归分合、分而治之。
采用 “工作窃取”模式(work-stealing):
当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加到线
程队列中,然后再从一个随机线程的队列中偷一个并把它放在自己的队列中
相对于一般的线程池实现,fork/join框架的优势体现在对其中包含的任务的
处理方式上.在一般的线程池中,如果一个线程正在执行的任务由于某些原因
无法继续运行,那么该线程会处于等待状态.而在fork/join框架实现中,如果
某个子问题由于等待另外一个子问题的完成而无法继续运行.那么处理该子
问题的线程会主动寻找其他尚未运行的子问题来执行.这种方式减少了线程
的等待时间,提高了性能.。
/*** 要想使用Fark—Join,类必须继承* RecursiveAction(无返回值)* Or* RecursiveTask(有返回值)
*
*/
public class ForkJoin extends RecursiveTask<Long> {/*** 要想使用Fark—Join,类必须继承RecursiveAction(无返回值) 或者* RecursiveTask(有返回值)** @author Wuyouxin*/private static final long serialVersionUID = 23423422L;private long start;private long end;public ForkJoin() {}public ForkJoin(long start, long end) {this.start = start;this.end = end;}// 定义阙值private static final long THRESHOLD = 10000L;@Overrideprotected Long compute() {if (end - start <= THRESHOLD) {long sum = 0;for (long i = start; i < end; i++) {sum += i;}return sum;} else {long middle = (end - start) / 2;ForkJoin left = new ForkJoin(start, middle);//拆分子任务,压入线程队列left.fork();ForkJoin right = new ForkJoin(middle + 1, end);right.fork();//合并并返回return left.join() + right.join();}}/*** 实现数的累加*/@Testpublic void test1() {//开始时间Instant start = Instant.now();//这里需要一个线程池的支持ForkJoinPool pool = new ForkJoinPool();ForkJoinTask<Long> task = new ForkJoin(0L, 10000000000L);// 没有返回值 pool.execute();// 有返回值long sum = pool.invoke(task);//结束时间Instant end = Instant.now();System.out.println(Duration.between(start, end).getSeconds());}/*** java8 并行流 parallel()*/@Testpublic void test2() {//开始时间Instant start = Instant.now();// 并行流计算 累加求和LongStream.rangeClosed(0, 10000000000L).parallel().reduce(0, Long :: sum);//结束时间Instant end = Instant.now();System.out.println(Duration.between(start, end).getSeconds());}@Testpublic void test3(){List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);list.stream().forEach(System.out::print);list.parallelStream().forEach(System.out::print);}
展示多线程的效果:
@Testpublic void test(){// 并行流 多个线程执行List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9);numbers.parallelStream().forEach(System.out::print);//System.out.println("=========================");numbers.stream().sequential().forEach(System.out::print);}
Optional容器
使用Optional容器可以快速的定位NPE,并且在一定程度上可以减少对参数非空检验的代码量。
/*** Optional.of(T t); // 创建一个Optional实例* Optional.empty(); // 创建一个空的Optional实例* Optional.ofNullable(T t); // 若T不为null,创建一个Optional实例,否则创建一个空实例* isPresent(); // 判断是够包含值* orElse(T t); //如果调用对象包含值,返回该值,否则返回T* orElseGet(Supplier s); // 如果调用对象包含值,返回该值,否则返回s中获取的值* map(Function f): // 如果有值对其处理,并返回处理后的Optional,否则返回Optional.empty();* flatMap(Function mapper);// 与map类似。返回值是Optional** 总结:Optional.of(null) 会直接报NPE*/Optional<Employee> op = Optional.of(new Employee("zhansan", 11, 12.32, Employee.Status.BUSY));System.out.println(op.get());// NPEOptional<Employee> op2 = Optional.of(null);System.out.println(op2);
@Testpublic void test2(){Optional<Object> op = Optional.empty();System.out.println(op);// No value presentSystem.out.println(op.get());}
@Testpublic void test3(){Optional<Employee> op = Optional.ofNullable(new Employee("lisi", 33, 131.42, Employee.Status.FREE));System.out.println(op.get());Optional<Object> op2 = Optional.ofNullable(null);System.out.println(op2);// System.out.println(op2.get());}@Testpublic void test5(){Optional<Employee> op1 = Optional.ofNullable(new Employee("张三", 11, 11.33, Employee.Status.VOCATION));System.out.println(op1.orElse(new Employee()));System.out.println(op1.orElse(null));}@Testpublic void test6(){Optional<Employee> op1 = Optional.of(new Employee("田七", 11, 12.31, Employee.Status.BUSY));op1 = Optional.empty();Employee employee = op1.orElseGet(() -> new Employee());System.out.println(employee);}@Testpublic void test7(){Optional<Employee> op1 = Optional.of(new Employee("田七", 11, 12.31, Employee.Status.BUSY));System.out.println(op1.map( (e) -> e.getSalary()).get());}
接口中可以定义默认实现方法和静态方法
在接口中可以使用default和static关键字来修饰接口中定义的普通方法
public interface Interface {default String getName(){return "zhangsan";}static String getName2(){return "zhangsan";}
}
在JDK1.8中很多接口会新增方法,为了保证1.8向下兼容,1.7版本中的接口实现类不用每个都重新实现新添加的接口方法,引入了default默认实现,static的用法是直接用接口名去调方法即可。当一个类继承父类又实现接口时,若后两者方法名相同,则优先继承父类中的同名方法,即“类优先”,如果实现两个同名方法的接口,则要求实现类必须手动声明默认实现哪个接口中的方法。
新的日期API LocalDate | LocalTime | LocalDateTime
新的日期API都是不可变的,更使用于多线程的使用环境中
@Test
public void test(){
// 从默认时区的系统时钟获取当前的日期时间。不用考虑时区差
LocalDateTime date = LocalDateTime.now();
//2018-07-15T14:22:39.759
System.out.println(date);
System.out.println(date.getYear());
System.out.println(date.getMonthValue());
System.out.println(date.getDayOfMonth());
System.out.println(date.getHour());
System.out.println(date.getMinute());
System.out.println(date.getSecond());
System.out.println(date.getNano());
// 手动创建一个LocalDateTime实例
LocalDateTime date2 = LocalDateTime.of(2017, 12, 17, 9, 31, 31, 31);
System.out.println(date2);
// 进行加操作,得到新的日期实例
LocalDateTime date3 = date2.plusDays(12);
System.out.println(date3);
// 进行减操作,得到新的日期实例
LocalDateTime date4 = date3.minusYears(2);
System.out.println(date4);
}
@Test
public void test2(){
// 时间戳 1970年1月1日00:00:00 到某一个时间点的毫秒值
// 默认获取UTC时区
Instant ins = Instant.now();
System.out.println(ins);
System.out.println(LocalDateTime.now().toInstant(ZoneOffset.of("+8")).toEpochMilli());
System.out.println(System.currentTimeMillis());
System.out.println(Instant.now().toEpochMilli());
System.out.println(Instant.now().atOffset(ZoneOffset.ofHours(8)).toInstant().toEpochMilli());
}
@Testpublic void test3(){// Duration:计算两个时间之间的间隔// Period:计算两个日期之间的间隔Instant ins1 = Instant.now();try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}Instant ins2 = Instant.now();Duration dura = Duration.between(ins1, ins2);System.out.println(dura);System.out.println(dura.toMillis());System.out.println("======================");LocalTime localTime = LocalTime.now();try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}LocalTime localTime2 = LocalTime.now();Duration du2 = Duration.between(localTime, localTime2);System.out.println(du2);System.out.println(du2.toMillis());}
@Testpublic void test4(){LocalDate localDate =LocalDate.now();try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}LocalDate localDate2 = LocalDate.of(2016,12,12);Period pe = Period.between(localDate, localDate2);System.out.println(pe);}
@Testpublic void test5(){// temperalAdjust 时间校验器// 例如获取下周日 下一个工作日LocalDateTime ldt1 = LocalDateTime.now();System.out.println(ldt1);// 获取一年中的第一天LocalDateTime ldt2 = ldt1.withDayOfYear(1);System.out.println(ldt2);// 获取一个月中的第一天LocalDateTime ldt3 = ldt1.withDayOfMonth(1);System.out.println(ldt3);LocalDateTime ldt4 = ldt1.with(TemporalAdjusters.next(DayOfWeek.FRIDAY));System.out.println(ldt4);// 获取下一个工作日LocalDateTime ldt5 = ldt1.with((t) -> {LocalDateTime ldt6 = (LocalDateTime)t;DayOfWeek dayOfWeek = ldt6.getDayOfWeek();if (DayOfWeek.FRIDAY.equals(dayOfWeek)){return ldt6.plusDays(3);}else if (DayOfWeek.SATURDAY.equals(dayOfWeek)){return ldt6.plusDays(2);}else {return ldt6.plusDays(1);}});System.out.println(ldt5);}
@Testpublic void test6(){// DateTimeFormatter: 格式化时间/日期// 自定义格式LocalDateTime ldt = LocalDateTime.now();DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy年MM月dd日");String strDate1 = ldt.format(formatter);String strDate = formatter.format(ldt);System.out.println(strDate);System.out.println(strDate1);// 使用api提供的格式DateTimeFormatter dtf = DateTimeFormatter.ISO_DATE;LocalDateTime ldt2 = LocalDateTime.now();String strDate3 = dtf.format(ldt2);System.out.println(strDate3);// 解析字符串to时间DateTimeFormatter df = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");LocalDateTime time = LocalDateTime.now();String localTime = df.format(time);LocalDateTime ldt4 = LocalDateTime.parse("2017-09-28 17:07:05",df);System.out.println("LocalDateTime转成String类型的时间:"+localTime);System.out.println("String类型的时间转成LocalDateTime:"+ldt4);}
// ZoneTime ZoneDate ZoneDateTime@Testpublic void test7(){LocalDateTime now = LocalDateTime.now(ZoneId.of("Asia/Shanghai"));System.out.println(now);LocalDateTime now2 = LocalDateTime.now();ZonedDateTime zdt = now2.atZone(ZoneId.of("Asia/Shanghai"));System.out.println(zdt);Set<String> set = ZoneId.getAvailableZoneIds();set.stream().forEach(System.out::println);}
补充:
表示日期的LocalDate
表示时间的LocalTime
表示日期时间的LocalDateTime
新的日期API的几个优点:
* 之前使用的java.util.Date月份从0开始,我们一般会+1使用,很不方便,java.time.LocalDate月份和星期都改成了enum* java.util.Date和SimpleDateFormat都不是线程安全的,而LocalDate和LocalTime和最基本的String一样,是不变类型,不但线程安全,而且不能修改。* java.util.Date是一个“万能接口”,它包含日期、时间,还有毫秒数,更加明确需求取舍* 新接口更好用的原因是考虑到了日期时间的操作,经常发生往前推或往后推几天的情况。用java.util.Date配合Calendar要写好多
- LocalDate
public static void localDateTest() {//获取当前日期,只含年月日 固定格式 yyyy-MM-dd 2018-05-04LocalDate today = LocalDate.now();// 根据年月日取日期,5月就是5,LocalDate oldDate = LocalDate.of(2018, 5, 1);// 根据字符串取:默认格式yyyy-MM-dd,02不能写成2LocalDate yesteday = LocalDate.parse("2018-05-03");// 如果不是闰年 传入29号也会报错LocalDate.parse("2018-02-29");}
- LocalDate常用转化
/*** 日期转换常用,第一天或者最后一天...*/public static void localDateTransferTest(){//2018-05-04LocalDate today = LocalDate.now();// 取本月第1天: 2018-05-01LocalDate firstDayOfThisMonth = today.with(TemporalAdjusters.firstDayOfMonth());// 取本月第2天:2018-05-02LocalDate secondDayOfThisMonth = today.withDayOfMonth(2);// 取本月最后一天,再也不用计算是28,29,30还是31: 2018-05-31LocalDate lastDayOfThisMonth = today.with(TemporalAdjusters.lastDayOfMonth());// 取下一天:2018-06-01LocalDate firstDayOf2015 = lastDayOfThisMonth.plusDays(1);// 取2018年10月第一个周三 so easy?: 2018-10-03LocalDate thirdMondayOf2018 = LocalDate.parse("2018-10-01").with(TemporalAdjusters.firstInMonth(DayOfWeek.WEDNESDAY));}
- LocalTime
public static void localTimeTest(){//16:25:46.448(纳秒值)LocalTime todayTimeWithMillisTime = LocalTime.now();//16:28:48 不带纳秒值LocalTime todayTimeWithNoMillisTime = LocalTime.now().withNano(0);LocalTime time1 = LocalTime.parse("23:59:59");}
- LocalDateTime
public static void localDateTimeTest(){//转化为时间戳 毫秒值long time1 = LocalDateTime.now().toInstant(ZoneOffset.of("+8")).toEpochMilli();long time2 = System.currentTimeMillis();//时间戳转化为localdatetimeDateTimeFormatter df= DateTimeFormatter.ofPattern("YYYY-MM-dd HH:mm:ss.SSS");System.out.println(df.format(LocalDateTime.ofInstant(Instant.ofEpochMilli(time1),ZoneId.of("Asia/Shanghai"))));}