背景
uber jvm profiler是用于在分布式监控收集jvm 相关指标,如:cpu/memory/io/gc信息等
安装
确保安装了maven和JDK>=8前提下,直接mvn clean package
java application
-
说明
直接以java agent的部署就可以使用
-
使用
java -javaagent:jvm-profiler-1.0.0.jar=reporter=com.uber.profiling.reporters.KafkaOutputReporter,brokerList='kafka1:9092',topicPrefix=demo_,tag=tag-demo,metricInterval=5000,sampleInterval=0 -cp target/jvm-profiler-1.0.0.jar
-
选项解释
参数 | 说明 |
---|---|
reporter | reporter类别, 此处直接默认为com.uber.profiling.reporters.KafkaOutputReporter就可以 |
brokerList | 如reporter为com.uber.profiling.reporters.KafkaOutputReporter,则brokerList为kafka列表,以逗号分隔 |
topicPrefix | 如reporter为com.uber.profiling.reporters.KafkaOutputReporter,则topicPrefix为kafka topic的前缀 |
tag | key为tag的metric,会输出到reporter中 |
metricInterval | metric report的频率,根据实际情况设置,单位为ms |
sampleInterval | jvm堆栈metrics report的频率,根据实际情况设置,单位为ms |
- 结果展示
"nonHeapMemoryTotalUsed": 11890584.0,"bufferPools": [{"totalCapacity": 0,"name": "direct","count": 0,"memoryUsed": 0},{"totalCapacity": 0,"name": "mapped","count": 0,"memoryUsed": 0}],"heapMemoryTotalUsed": 24330736.0,"epochMillis": 1515627003374,"nonHeapMemoryCommitted": 13565952.0,"heapMemoryCommitted": 257425408.0,"memoryPools": [{"peakUsageMax": 251658240,"usageMax": 251658240,"peakUsageUsed": 1194496,"name": "Code Cache","peakUsageCommitted": 2555904,"usageUsed": 1173504,"type": "Non-heap memory","usageCommitted": 2555904},{"peakUsageMax": -1,"usageMax": -1,"peakUsageUsed": 9622920,"name": "Metaspace","peakUsageCommitted": 9830400,"usageUsed": 9622920,"type": "Non-heap memory","usageCommitted": 9830400},{"peakUsageMax": 1073741824,"usageMax": 1073741824,"peakUsageUsed": 1094160,"name": "Compressed Class Space","peakUsageCommitted": 1179648,"usageUsed": 1094160,"type": "Non-heap memory","usageCommitted": 1179648},{"peakUsageMax": 1409286144,"usageMax": 1409286144,"peakUsageUsed": 24330736,"name": "PS Eden Space","peakUsageCommitted": 67108864,"usageUsed": 24330736,"type": "Heap memory","usageCommitted": 67108864},{"peakUsageMax": 11010048,"usageMax": 11010048,"peakUsageUsed": 0,"name": "PS Survivor Space","peakUsageCommitted": 11010048,"usageUsed": 0,"type": "Heap memory","usageCommitted": 11010048},{"peakUsageMax": 2863661056,"usageMax": 2863661056,"peakUsageUsed": 0,"name": "PS Old Gen","peakUsageCommitted": 179306496,"usageUsed": 0,"type": "Heap memory","usageCommitted": 179306496}],"processCpuLoad": 0.0008024004394748531,"systemCpuLoad": 0.23138430784607697,"processCpuTime": 496918000,"appId": null,"name": "24103@machine01","host": "machine01","processUuid": "3c2ec835-749d-45ea-a7ec-e4b9fe17c23a","tag": "mytag","gc": [{"collectionTime": 0,"name": "PS Scavenge","collectionCount": 0},{"collectionTime": 0,"name": "PS MarkSweep","collectionCount": 0}]
}
spark application
-
说明
和java应用不同,需要把jvm-profiler.jar分发到各个节点上
-
使用
--jars hdfs:///public/libs/jvm-profiler-1.0.0.jar --conf spark.driver.extraJavaOptions=-javaagent:jvm-profiler-1.0.0.jar=reporter=com.uber.profiling.reporters.KafkaOutputReporter,brokerList='kafka1:9092',topicPrefix=demo_,tag=tag-demo,metricInterval=5000,sampleInterval=0 --conf spark.executor.extraJavaOptions=-javaagent:jvm-profiler-1.0.0.jar=reporter=com.uber.profiling.reporters.KafkaOutputReporter,brokerList='kafka1:9092',topicPrefix=demo_,tag=tag-demo,metricInterval=5000,sampleInterval=0
-
选项解释
参数 | 说明 |
---|---|
reporter | reporter类别, 此处直接默认为com.uber.profiling.reporters.KafkaOutputReporter就可以 |
brokerList | 如reporter为com.uber.profiling.reporters.KafkaOutputReporter,则brokerList为kafka列表,以逗号分隔 |
topicPrefix | 如reporter为com.uber.profiling.reporters.KafkaOutputReporter,则topicPrefix为kafka topic的前缀 |
tag | key为tag的metric,会输出到reporter中 |
metricInterval | metric report的频率,根据实际情况设置,单位为ms |
sampleInterval | jvm堆栈metrics report的频率,根据实际情况设置,单位为ms |
- 结果展示
"nonHeapMemoryTotalUsed": 11890584.0,"bufferPools": [{"totalCapacity": 0,"name": "direct","count": 0,"memoryUsed": 0},{"totalCapacity": 0,"name": "mapped","count": 0,"memoryUsed": 0}],"heapMemoryTotalUsed": 24330736.0,"epochMillis": 1515627003374,"nonHeapMemoryCommitted": 13565952.0,"heapMemoryCommitted": 257425408.0,"memoryPools": [{"peakUsageMax": 251658240,"usageMax": 251658240,"peakUsageUsed": 1194496,"name": "Code Cache","peakUsageCommitted": 2555904,"usageUsed": 1173504,"type": "Non-heap memory","usageCommitted": 2555904},{"peakUsageMax": -1,"usageMax": -1,"peakUsageUsed": 9622920,"name": "Metaspace","peakUsageCommitted": 9830400,"usageUsed": 9622920,"type": "Non-heap memory","usageCommitted": 9830400},{"peakUsageMax": 1073741824,"usageMax": 1073741824,"peakUsageUsed": 1094160,"name": "Compressed Class Space","peakUsageCommitted": 1179648,"usageUsed": 1094160,"type": "Non-heap memory","usageCommitted": 1179648},{"peakUsageMax": 1409286144,"usageMax": 1409286144,"peakUsageUsed": 24330736,"name": "PS Eden Space","peakUsageCommitted": 67108864,"usageUsed": 24330736,"type": "Heap memory","usageCommitted": 67108864},{"peakUsageMax": 11010048,"usageMax": 11010048,"peakUsageUsed": 0,"name": "PS Survivor Space","peakUsageCommitted": 11010048,"usageUsed": 0,"type": "Heap memory","usageCommitted": 11010048},{"peakUsageMax": 2863661056,"usageMax": 2863661056,"peakUsageUsed": 0,"name": "PS Old Gen","peakUsageCommitted": 179306496,"usageUsed": 0,"type": "Heap memory","usageCommitted": 179306496}],"processCpuLoad": 0.0008024004394748531,"systemCpuLoad": 0.23138430784607697,"processCpuTime": 496918000,"appId": null,"name": "24103@machine01","host": "machine01","processUuid": "3c2ec835-749d-45ea-a7ec-e4b9fe17c23a","tag": "mytag","gc": [{"collectionTime": 0,"name": "PS Scavenge","collectionCount": 0},{"collectionTime": 0,"name": "PS MarkSweep","collectionCount": 0}]
}
分析
- 已有的reporter
reporter | 说明 |
---|---|
ConsoleOutputReporter | 默认的repoter,一般用于调试 |
FileOutputReporter | 基于文件的reporter,分布式环境下不适用,得设置outputDir |
KafkaOutputReporter | 基于kafka的reporter,正式环境用的多,得设置brokerList,topicPrefix |
GraphiteOutputReporter | 基于Graphite的reporter,需设置graphite.host等配置 |
RedisOutputReporter | 基于redis的reporter,构建命令 mvn -P redis clean package |
InfluxDBOutputReporter | 基于InfluxDB的reporter,构建命令mvn -P influxdb clean package ,需设置influxdb.host等配置 |
建议在生产环境下使用KafkaOutputReporter,操作灵活性高,可以结合clickhouse grafana进行指标展示
-
源码分析
该jvm-profiler整体是基于java agent实现,项目pom文件 指定了MANIFEST.MF中的Premain-Class项和Agent-Class为com.uber.profiling.Agent
具体的实现类为AgentImpl
就具体的AgentImpl类的run方法来进行分析public void run(Arguments arguments, Instrumentation instrumentation, Collection<AutoCloseable> objectsToCloseOnShutdown) {if (arguments.isNoop()) {logger.info("Agent noop is true, do not run anything");return;}Reporter reporter = arguments.getReporter();String processUuid = UUID.randomUUID().toString();String appId = null;String appIdVariable = arguments.getAppIdVariable();if (appIdVariable != null && !appIdVariable.isEmpty()) {appId = System.getenv(appIdVariable);}if (appId == null || appId.isEmpty()) {appId = SparkUtils.probeAppId(arguments.getAppIdRegex());}if (!arguments.getDurationProfiling().isEmpty()|| !arguments.getArgumentProfiling().isEmpty()) {instrumentation.addTransformer(new JavaAgentFileTransformer(arguments.getDurationProfiling(), arguments.getArgumentProfiling()));}List<Profiler> profilers = createProfilers(reporter, arguments, processUuid, appId);ProfilerGroup profilerGroup = startProfilers(profilers);Thread shutdownHook = new Thread(new ShutdownHookRunner(profilerGroup.getPeriodicProfilers(), Arrays.asList(reporter), objectsToCloseOnShutdown));Runtime.getRuntime().addShutdownHook(shutdownHook);}
- arguments.getReporter() 获取reporter,如果没有设置则设置为reporterConstructor,否则设置为指定的reporter
- String appId ,设置appId,首先从配置中查找,如果没有设置,再从env中查找,对于spark应用则取spark.app.id的值
- List profilers = createProfilers(reporter, arguments, processUuid, appId),创建profilers,默认有CpuAndMemoryProfiler,ThreadInfoProfiler,ProcessInfoProfiler
其中CpuAndMemoryProfiler/ThreadInfoProfiler/ProcessInfoProfiler是从JMX中读取数据,ProcessInfoProfiler还会从 /pro读取数据
如果设置了durationProfiling/argumentProfiling/sampleInterval/ioProfiling,则会增加对应的MethodDurationProfiler(输出方法调用花费的时间)/MethodArgumentProfiler(输出方法参数的值)/StacktraceReporterProfiler/IOProfiler
其中MethodArgumentProfiler和MethodDurationProfiler利用javassist第三方字节码编译工具来改写对应的类,具体实现参照JavaAgentFileTransformer
StacktraceReporterProfiler从JMX中读取数据
IOProfiler则是读取本地机器上的/pro文件对应的目录的数据 - ProfilerGroup profilerGroup = startProfilers(profilers) 开始进行profiler的定时report
其中还会区分oneTimeProfilers和periodicProfilers,ProcessInfoProfiler就属于oneTimeProfilers,因为process的信息,在运行期间是不会变的,不需要周期行的reporter
至此,整个流程结束