Navigator
Pre Blog Link
Robust multi-period portfolio selection(1)
Robust optimization and asymmetric distribution
考虑一般形式的随机规划
min?x{c′x:G(x,ξ~)≥0,x∈X}(3.1)\min_x\{\pmb{c}'\pmb{x}:G(\pmb{x}, \tilde{\xi})\geq 0, \pmb{x}\in\mathcal{X}\}\tag{3.1} xmin?{
ccc′xxx:G(xxx,ξ~?)≥0,xxx∈X}(3.1)
其中ξ~∈Rm\tilde{\pmb{\xi}}\in\mathbb{R}^mξ?ξ??ξ~?∈Rm为一个随机向量,支撑集(support set
)Sξ?Rm\mathbb{S}_\xi\subset\mathbb{R}^mSξ??Rm. 模型(3.1)(3.1)(3.1)的解x\pmb{x}xxx满足随机约束条件,即对于任意ξ~∈Sξ\tilde{\pmb{\xi}}\in\mathbb{S}_\xiξ?ξ??ξ~?∈Sξ?均要求约束满足,但是实际上这种情况一般是不可能的.
对于鲁棒优化问题的求解步骤一般是构建一个紧的, compact
不确定集合UΩU_\OmegaUΩ?,并且集合的大小取决于常数Ω\OmegaΩ. 然后在集合UΩU_\OmegaUΩ?中求解问题
- x\pmb{x}xxx是方程(3.1)(3.1)(3.1)的最优解对于ξ∈UΩ\pmb{\xi}\in U_\Omegaξ?ξ??ξ∈UΩ?.
- 解x\pmb{x}xxx满足随机约束的概率是一个Ω\OmegaΩ中可以求出的函数(
tractable function
),模型(3.1)(3.1)(3.1)中的鲁棒部分为
min?x{c′x:G(x,ξ)≥0,ξ∈UΩ,x∈X}(3.2)\min_x\{\pmb{c}'\pmb{x}: G(\pmb{x}, \pmb{\xi})\geq 0, \pmb{\xi}\in U_\Omega, \pmb{x}\in \mathcal{X}\}\tag{3.2} xmin?{ ccc′xxx:G(xxx,ξ?ξ??ξ)≥0,ξ?ξ??ξ∈UΩ?,xxx∈X}(3.2)
即转换为一个非随机优化问题. 如果可以找到uΩu_\OmegauΩ?的上界(upper bound
),即满足
P(G(x,ξ~)≥0)≥uΩ\mathbb{P}(G(\pmb{x}, \tilde{\pmb{\xi}})\geq 0)\geq u_\Omega P(G(xxx,ξ?ξ??ξ~?)≥0)≥uΩ?
可以找出一个常数Ω\OmegaΩ使得uΩu_\OmegauΩ?接近于1,即x\pmb{x}xxx在一定概率下满足(3.2)(3.2)(3.2)的鲁棒部分.
This gives a probability guarantee of the solution x\pmb{x}xxx of robust counterpart.
常用刻画不确定集合的方法为椭圆集合(Ben-Tal & Nemirovski, 19981; Ghaoui et al., 20032; Gulpinar et al., 20133, 20164).
UΩ={ξ:∥ξ∥2≤Ω}(3.3)U_\Omega=\{\pmb{\xi}:\lVert \pmb{\xi}\rVert_2\leq \Omega\}\tag{3.3} UΩ?={
ξ?ξ??ξ:∥ξ?ξ??ξ∥2?≤Ω}(3.3)
It can be proved that if G(x,ξ)G(\pmb{x}, \pmb{\xi})G(xxx,ξ?ξ??ξ) is linear in ξ\pmb{\xi}ξ?ξ??ξ, the robust counterpart in (3.2)(3.2)(3.2) with UΩU_\OmegaUΩ? given by (3.3)(3.3)(3.3) can be converted intp a
convex cone constraint
that can be solved usinginterior point
algorithms, where theprobability guarantee
is not less than uΩ=1?exp?(?Ω2/2)u_\Omega=1-\exp(-\Omega^2/2)uΩ?=1?exp(?Ω2/2). Hence, robust optimization ideas can also be used to deal with the following probability constraint.
P{G(x,ξ~)≥0}≥1?ε(3.4)\mathbb{P}\{G(\pmb{x}, \tilde{\pmb{\xi}})\geq 0\}\geq 1-\varepsilon\tag{3.4} P{
G(xxx,ξ?ξ??ξ~?)≥0}≥1?ε(3.4)
选择合适的常数Ω\OmegaΩ,使得uΩ=1?εu_\Omega=1-\varepsilonuΩ?=1?ε.
本文引入非对称分布刻画不确定集合(Chen et al. 20075),设置函数G(x,ξ~)G(\pmb{x}, \tilde{\pmb{\xi}})G(xxx,ξ?ξ??ξ~?)具有如下双线性(bilinear form
)形式
G(x,ξ~)=h0(x)+∑i=1mhi(x)ξ~i(3.5)G(\pmb{x}, \tilde{\pmb{\xi}})=h_0(\pmb{x})+\sum_{i=1}^mh_i(\pmb{x})\tilde{\xi}_i\tag{3.5} G(xxx,ξ?ξ??ξ~?)=h0?(xxx)+i=1∑m?hi?(xxx)ξ~?i?(3.5)
其中hi(i=0,1,…,m)h_i(i=0,1,\dots, m)hi?(i=0,1,…,m)是关于x\pmb{x}xxx的线性方程,ξ~i\tilde{\xi}_iξ~?i?表示原始不确定性(primitive uncertainty
). 根据计量经济学理论,可以对ξ\pmb{\xi}ξ?ξ??ξ设置如下标准条件6
{E[ξ~]=0E[ξ~ξ~′]=I(3.6)\left\{ \begin{aligned} &\mathbb{E}[\tilde{\pmb{\xi}}]=\pmb{0}\\ &\mathbb{E}[\tilde{\pmb{\xi}}\tilde{\pmb{\xi}}']=\pmb{I} \end{aligned}\tag{3.6} \right. ?????E[ξ?ξ??ξ~?]=000E[ξ?ξ??ξ~?ξ?ξ??ξ~?′]=III?(3.6)
支撑集
S=[?l,u]\mathbb{S}=[-\pmb{l}, \pmb{u}] S=[?lll,uuu]
其中l=(l1,l2,…,lm)′,u=(u1,u2,…,um)′,?∞≤li≤ui≤∞\pmb{l}=(l_1, l_2, \dots, l_m)', \pmb{u}=(u_1, u_2, \dots, u_m)', -\infty\leq l_i\leq u_i\leq \inftylll=(l1?,l2?,…,lm?)′,uuu=(u1?,u2?,…,um?)′,?∞≤li?≤ui?≤∞, Chen et al提出的不确定集合如下
FΩ={ξ:?u?,u?∈R+m,ξ=u??u?,∥P?1u?+Q?1u?∥2≤Ω,ξ∈[?l,u]}(3.7)\mathcal{F}_\Omega=\{\pmb{\xi}:\exist \underline{\pmb{u}}, \overline{\pmb{u}}\in\mathbb{R}_+^m, \pmb{\xi}=\overline{\pmb{u}}-\underline{\pmb{u}}, \lVert \mathbf{P}^{-1}\overline{\pmb{u}}+\mathbf{Q}^{-1}\underline{\pmb{u}}\rVert_2\leq \Omega, \pmb{\xi}\in[-\pmb{l}, \pmb{u}]\}\tag{3.7} FΩ?={
ξ?ξ??ξ:?uuu?,uuu∈R+m?,ξ?ξ??ξ=uuu?uuu?,∥P?1uuu+Q?1uuu?∥2?≤Ω,ξ?ξ??ξ∈[?lll,uuu]}(3.7)
其中矩阵P\mathbf{P}P和Q\mathbf{Q}Q满足如下性质
{P=diag(p1,…,pm)Q=diag(q1,…,qm)pi=σf(ξ~i)>0forward devationsqi=σb(ξ~i)>0backward devations\left\{ \begin{aligned} &\mathbf{P}=diag(p_1, \dots, p_m)\\ &\mathbf{Q}=diag(q_1, \dots, q_m)\\ &p_i=\sigma_f(\tilde{\xi}_i)>0\quad&\text{forward devations}\\ &q_i=\sigma_b(\tilde{\xi}_i)>0\quad&\text{backward devations} \end{aligned} \right. ?????????????P=diag(p1?,…,pm?)Q=diag(q1?,…,qm?)pi?=σf?(ξ~?i?)>0qi?=σb?(ξ~?i?)>0?forward devationsbackward devations?
不确定集合FΩ\mathcal{F}_\OmegaFΩ?为紧的凸集合,参数Ω\OmegaΩ控制集合的大小. 可以发现,当P=Q=I\mathbf{P}=\mathbf{Q}=\mathbf{I}P=Q=I且l=u=∞\mathbf{l}=\mathbf{u}=\inftyl=u=∞时,FΩ\mathcal{F}_\OmegaFΩ?退化为UΩU_\OmegaUΩ?.
Intuitively, to capture distributional asymmetries, we decompose the primitive data uncertainty into two random variables.
{u?~=max?{ξ~,0}u?~=max?{?ξ~,0}ξ~=u?~?u?~\left\{ \begin{aligned} &\tilde{\overline{\pmb{u}}}=\max\{\tilde{\pmb{\xi}}, 0\}\\ &\tilde{\underline{\pmb{u}}}=\max\{-\tilde{\pmb{\xi}}, 0\}\\ &\tilde{\pmb{\xi}}=\tilde{\overline{\pmb{u}}}-\tilde{\underline{\pmb{u}}} \end{aligned} \right. ?????????uuu~=max{ ξ?ξ??ξ~?,0}uuu?~?=max{ ?ξ?ξ??ξ~?,0}ξ?ξ??ξ~?=uuu~?uuu?~??
The multipliers P?1\mathbf{P}^{-1}P?1 and Q?1\mathbf{Q}^{-1}Q?1 normalize the effective peturbation contributed by both u?~\tilde{\overline{\pmb{u}}}uuu~ and u?~\tilde{\underline{\pmb{u}}}uuu?~? such that the norm of the aggregated values falls within the budget of uncertainty.
使用p(ξ~)p(\tilde{\xi})p(ξ~?)和q(ξ~)q(\tilde{\xi})q(ξ~?)描述均值为0的forward deviations
和backward deviations
p(ξ~)=inf?{αp:αp≥0,E[exp?(?αpξ~)]≤exp?(?22),??>0}(3.8)p(\tilde{\xi})=\inf\bigg\{ \alpha_p:\alpha_p\geq 0, \mathbb{E}\bigg[\exp\bigg(\frac{\phi}{\alpha_p}\tilde{\xi}\bigg)\bigg]\leq \exp\bigg(\frac{\phi^2}{2}\bigg),\forall \phi>0\bigg\}\tag{3.8} p(ξ~?)=inf{
αp?:αp?≥0,E[exp(αp???ξ~?)]≤exp(2?2?),??>0}(3.8)
和
q(ξ~)=inf?{βq:βq≥0,E[exp?(??βqξ~)]≤exp?(?22),??>0}(3.8)q(\tilde{\xi})=\inf\bigg\{ \beta_q:\beta_q\geq 0, \mathbb{E}\bigg[\exp\bigg(-\frac{\phi}{\beta_q}\tilde{\xi}\bigg)\bigg]\leq \exp\bigg(\frac{\phi^2}{2}\bigg),\forall \phi>0\bigg\}\tag{3.8} q(ξ~?)=inf{
βq?:βq?≥0,E[exp(?βq???ξ~?)]≤exp(2?2?),??>0}(3.8)
且当ξ~\tilde{\xi}ξ~?的支撑集[?l,u][-l, u][?l,u]有限时,ppp和qqq为有限;而当支撑集无穷时,ppp和qqq未必有限. 但是当随机变量ξ~\tilde{\xi}ξ~?服从正态分布时,ppp和qqq是有界的并且等于标准偏离(Chen et al. 20075)实际上,随机变量ξ~\tilde{\xi}ξ~?的精确分布无从得知,所以p(ξ~)p(\tilde{\xi})p(ξ~?)和q(ξ~)q(\tilde{\xi})q(ξ~?)需要从数据中估计出来.
Fig-1给出了一个关于不确定集合FΩ\mathcal{F}_\OmegaFΩ?的二维的例子,可以发现FΩF_\OmegaFΩ?是关于(0,0)(0, 0)(0,0)的不对称集合. 在FΩ\mathcal{F}_\OmegaFΩ?下随机约束条件可以表示为
G(x,ξ)≥0,?ξ∈FΩ(3.10)G(\pmb{x}, \pmb{\xi})\geq 0, \forall \pmb{\xi}\in\mathcal{F}_\Omega\tag{3.10} G(xxx,ξ?ξ??ξ)≥0,?ξ?ξ??ξ∈FΩ?(3.10)
下面两个定理在后续分析中是很关键的,定理的证明可以在Chen et al. (2007)5中找到.
定理 3.1:如果分布支撑集S\mathbb{S}S是有限的,(3.10)(3.10)(3.10)中和以下结果等价
?ζ∈Rm,s,v∈R+m{h0(x)≥Ω∥ζ∥2+s′u+v′lζi≥?pi(hi(x)+si?vi)ζi≥qi(hi(x)+si?vi)(3.11)\begin{aligned} &\forall\pmb{\zeta}\in\mathbb{R}^m, \pmb{s}, \pmb{v}\in\mathbb{R}_+^m\\ & \begin{cases} h_0(\pmb{x})\geq \Omega\lVert\pmb{\zeta}\rVert_2+\pmb{s}'\pmb{u}+\pmb{v}'\pmb{l}\\ \zeta_i\geq -p_i(h_i(\pmb{x})+s_i-v_i)\\ \zeta_i\geq q_i(h_i(\pmb{x})+s_i-v_i) \end{cases} \end{aligned}\tag{3.11} ??ζ?ζ??ζ∈Rm,sss,vvv∈R+m???????h0?(xxx)≥Ω∥ζ?ζ??ζ∥2?+sss′uuu+vvv′lllζi?≥?pi?(hi?(xxx)+si??vi?)ζi?≥qi?(hi?(xxx)+si??vi?)??(3.11)
定理3.2:令随机向量ξ~\tilde{\pmb{\xi}}ξ?ξ??ξ~?满足标准条件(3.6)(3.6)(3.6),x\pmb{x}xxx为鲁棒可行集中的向量,可以得到
P{G(x,ξ~)≥0}≥1?exp?(?Ω2/2)(3.12)\mathbb{P}\{G(\pmb{x}, \tilde{\xi})\geq 0\}\geq 1-\exp(-\Omega^2/2)\tag{3.12} P{
G(xxx,ξ~?)≥0}≥1?exp(?Ω2/2)(3.12)
如果我们通过历史数据得到了关于ξ~\tilde{\xi}ξ~?的分布信息,可以得到关于p(ξ~)p(\tilde{\xi})p(ξ~?)和q(ξ~)q(\tilde{\xi})q(ξ~?)的估计结论如下
定理3.3[Natarajan et al, 20087]: 如果关于随机向量ξ~\tilde{\xi}ξ~?的分布信息或者历史数据已知,可以通过以下公式估计出p(ξ~)p(\tilde{\xi})p(ξ~?)和q(ξ~)q(\tilde{\xi})q(ξ~?)
{p(ξ~)=sup?π>0{2ln?(E(exp?(πξ~)))π2}q(ξ~)=sup?π>0{2ln?(E(exp?(?πξ~)))π2}\left\{ \begin{aligned} &p(\tilde{\xi})=\sup_{\pi>0}\bigg\{\sqrt{2\frac{\ln(\mathbb{E}(\exp(\pi\tilde{\xi})))}{\pi^2}}\bigg\}\\ &q(\tilde{\xi})=\sup_{\pi>0}\bigg\{\sqrt{2\frac{\ln(\mathbb{E(\exp(-\pi\tilde{\xi}))})}{\pi^2}}\bigg\} \end{aligned} \right. ???????????????p(ξ~?)=π>0sup?{
2π2ln(E(exp(πξ~?)))??}q(ξ~?)=π>0sup?{
2π2ln(E(exp(?πξ~?)))??}?
Robust Convex Optimization ??
worst case VaR and Robust portfolio_A conic programming approach ??
a robust optimization approach to asset-la under time-varying inv opp ??
A robust asset-liability man- agement framework ??
a robust optimization perspective on stochastic programming ?? ?? ??
如果ξ~\tilde{\xi}ξ~?具有均值μξ\mu_\xiμξ?以及非对角方差协方差矩阵Σξ\Sigma_\xiΣξ?,令f~=Σξ?12(ξ~?μξ)\tilde{f}=\Sigma_\xi^{-\frac{1}{2}}(\tilde{\xi}-\mu_\xi)f~?=Σξ?21??(ξ~??μξ?),那么f~\tilde{f}f~?满足标准条件(3.6)(3.6)(3.6). ??
Incorporating asymmetric distri- butional information in robust value-at-risk optimization ??