当前位置: 代码迷 >> 综合 >> 典型2R机械臂结构分析 2R-manipulator Geometric Modeling
  详细解决方案

典型2R机械臂结构分析 2R-manipulator Geometric Modeling

热度:81   发布时间:2024-02-21 07:01:47.0

2R-manipulator Geometric Modeling

在这里插入图片描述

Q1: Direct Geometric Model

(θ1,θ2)→(x,y)(\theta_1,\theta_2) \rightarrow (x,y)(θ1?,θ2?)(x,y)

OP→=OA→+AP→\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{AP}OP =OA +AP

OP→=l1u→+l2v→\overrightarrow{OP}=l_1\overrightarrow{u}+l_2\overrightarrow{v}OP =l1?u +l2?v
Here,we know u?=[cosθ1sinθ1]\vec{u}=\begin{bmatrix} cos\theta_1 \\ sin\theta_1 \end{bmatrix}u =[cosθ1?sinθ1??],and v1?=[cos(θ1+θ2)sin(θ1+θ2)]\vec{v_1}=\begin{bmatrix} cos(\theta_1+\theta_2) \\ sin(\theta_1+\theta_2 )\end{bmatrix}v1? ?=[cos(θ1?+θ2?)sin(θ1?+θ2?)?]
For the direct geometric model,we have
Px=l1cosθ1+l2cos(θ1+θ2)P_x=l_1cos\theta_1+l_{2}cos(\theta_1+\theta_2) Px?=l1?cosθ1?+l2?cos(θ1?+θ2?)

Py=l1sinθ1+l2sin(θ1+θ2)P_y=l_1sin\theta_1+l_{2}sin(\theta_1+\theta_2) Py?=l1?sinθ1?+l2?sin(θ1?+θ2?)

Q2: Inverse Geometric Model

(x,y)→(θ1,θ2)(x,y) \rightarrow (\theta_1,\theta_2)(x,y)(θ1?,θ2?)

As we would like to consider about the inverse geometric model,
x2=l12cos2θ1+2l1l2cosθ1cos(θ1+θ2)+l22cos2(θ1+θ2)x^2=l_1^2cos^2\theta_1+2l_1l_2cos\theta_1cos(\theta_1+\theta_2)+l_2^2cos^2(\theta_1+\theta_2)x2=l12?cos2θ1?+2l1?l2?cosθ1?cos(θ1?+θ2?)+l22?cos2(θ1?+θ2?)
y2=l12sin2θ1+2l1l2sinθ1sin(θ1+θ2)+l22sin2(θ1+θ2)y^2=l_1^2sin^2\theta_1+2l_1l_2sin\theta_1sin(\theta_1+\theta_2)+l_2^2sin^2(\theta_1+\theta_2)y2=l12?sin2θ1?+2l1?l2?sinθ1?sin(θ1?+θ2?)+l22?sin2(θ1?+θ2?)
We add these two equations,we know that
x2+y2=l12+l22+2l1l2cosθ2x^2+y^2=l_1^2+l_2^2+2l_1l_2cos\theta_2x2+y2=l12?+l22?+2l1?l2?cosθ2?
So we know that
cosθ2=?l12?l22+x2+y22l1l2cos\theta_2=\frac{-l_1^2-l_2^2+x^2+y^2}{2l_1l_2}cosθ2?=2l1?l2??l12??l22?+x2+y2?
equation(R):θ2=+/?arccos(?l12?l22+x2+y22l1l2)equation (R):\theta_2=+/-arccos(\frac{-l_1^2-l_2^2+x^2+y^2}{2l_1l_2})equation(R):θ2?=+/?arccos(2l1?l2??l12??l22?+x2+y2?)

QUESTION 1:How about θ1(x.y)\theta_1(x.y)θ1?(x.y)?For inverse geometric,if we know the position of the end-effector(x,y)(x,y)(x,y),we could get 2 solution which could be observed in equation R.We have positive and negative θ2\theta_2θ2?,and each solution has its corresponding value of θ1\theta_1θ1?.So why there is no equation for θ1(x.y)\theta_1(x.y)θ1?(x.y). I still feel confused with it.

Feedback:knowing θ2\theta_2θ2?, you end up with a linear system of equations with two equations and two unknown (cos(θ1)(cos(\theta_1)(cos(θ1?) and sin(θ1))sin(\theta1))sin(θ1))

在这里插入图片描述

Then we would like to calculate the Kinematic Jacobian Matrix.

Q3: Kinematic Jacobian Matrix

dPdt=d(OA→+AP→)dt=l1du→dt+l2dv→dt=l1Euθ1˙+l2Ev(θ1˙+θ2˙)\frac{\mathrm{d}P}{\mathrm{d}t}=\frac{d({\overrightarrow{OA}+\overrightarrow{AP}})}{dt}=l_1\frac{\mathrm{d}\overrightarrow{u}}{\mathrm{d}t}+l_2\frac{\mathrm{d}\overrightarrow{v}}{\mathrm{d}t}=l_1\mathbf{E}\mathbf{u}\dot{\theta_1}+l_2\mathbf{E}\mathbf{v}(\dot{\theta_1}+\dot{\theta_2})dtdP?=dtd(OA +AP )?=l1?dtdu ?+l2?dtdv ?=l1?Euθ1?˙?+l2?Ev(θ1?˙?+θ2?˙?)
Where E=[0?110]E=\begin{bmatrix} 0 &-1 \\ 1&0 \end{bmatrix}E=[01??10?]Then we get
P˙=(l1Eu+l2Ev)θ1˙+l2Evθ2˙\dot P =(l_1\mathbf{E}\mathbf{u}+l_2\mathbf{E}\mathbf{v})\dot{\theta_1}+l_2\mathbf{E}\mathbf{v}\dot{\theta_2}P˙=(l1?Eu+l2?Ev)θ1?˙?+l2?Evθ2?˙?
We use this kind of way(using vector).
P˙=E[R1R2][θ1˙θ2˙]\dot P=\mathbf{E}[\mathbf{R_1\quad R_2}]\begin{bmatrix} \dot{\theta_1} \\ \dot{\theta_2} \end{bmatrix}P˙=E[R1?R2?][θ1?˙?θ2?˙??]

When we talk about singularity it always equal to calculate ∣∣J∣∣||J||J or det(J)=0det(J)=0det(J)=0.
E[R1R2]=[0?110][l1cosθ1+l2cos(θ1+θ2)l2cos(θ1+θ2)l1sinθ1+l2sin(θ1+θ2)l2sin(θ1+θ2)]\mathbf{E}[\mathbf{R_1\quad R_2}]=\begin{bmatrix} 0 &-1 \\ 1&0 \end{bmatrix}\begin{bmatrix} l_1cos\theta_1+l_{2}cos(\theta_1+\theta_2) &l_{2}cos(\theta_1+\theta_2)\\ l_1sin\theta_1+l_{2}sin(\theta_1+\theta_2) &l_{2}sin(\theta_1+\theta_2) \end{bmatrix}E[R1?R2?]=[01??10?][l1?cosθ1?+l2?cos(θ1?+θ2?)l1?sinθ1?+l2?sin(θ1?+θ2?)?l2?cos(θ1?+θ2?)l2?sin(θ1?+θ2?)?]
We have θ2=0\theta_2=0θ2?=0 to make the rank<2rank<2rank<2
QUESTION2:When passing close to this singularity(maybe a type of Elbow singularity),how can we analyze what will happen to the robot?

Feedback:the kinematic Jacobian matrix gives you the motions that are not possible

在这里插入图片描述
We have θ2=π\theta_2=\piθ2?=π to make the rank<2rank<2rank<2
在这里插入图片描述

I have found a video “Meca500”,it introdruces3tpyes of singularities(Note,the last one is about the situation which is passing close to shoulder singularity)

wrist singularity Elbow singularity Shoulder singularity
在这里插入图片描述 在这里插入图片描述 在这里插入图片描述
在这里插入图片描述 在这里插入图片描述 在这里插入图片描述
  相关解决方案