当前位置: 代码迷 >> 综合 >> 不能错过的分布式ID生成器(Leaf ),好用的一批
  详细解决方案

不能错过的分布式ID生成器(Leaf ),好用的一批

热度:31   发布时间:2024-02-21 01:56:46.0

美团(Leaf)

Leaf是美团推出的一个分布式ID生成服务,名字取自德国哲学家、数学家莱布尼茨一句话:“There are no two identical leaves in the world.”(“世界上没有两片相同的树叶”),取个名字都这么有寓意,美团程序员牛掰啊!

Leaf的优势:高可靠、低延迟、全局唯一等特点。

目前主流的分布式ID生成方式,大致都是基于数据库号段模式和雪花算法(snowflake),而美团(Leaf)刚好同时兼具了这两种方式,可以根据不同业务场景灵活切换。

接下来结合实战,详细的介绍一下Leaf的Leaf-segment号段模式和Leaf-snowflake模式

一、 Leaf-segment号段模式

Leaf-segment号段模式是对直接用数据库自增ID充当分布式ID的一种优化,减少对数据库的频率操作。相当于从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,业务服务将号段在本地生成1~1000的自增ID并加载到内存.。

大致的流程如下图所示:

不能错过的分布式ID生成器(Leaf ),好用的一批

号段耗尽之后再去数据库获取新的号段,可以大大的减轻数据库的压力。对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。

由于依赖数据库,我们先设计一下表结构:

 

CREATE TABLE `leaf_alloc` (  `biz_tag` varchar(128) NOT NULL DEFAULT '' COMMENT '业务key',  `max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',  `step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',  `description` varchar(256) DEFAULT NULL COMMENT '业务key的描述',  `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',  PRIMARY KEY (`biz_tag`)) ENGINE=InnoDB DEFAULT CHARSET=utf8;

预先插入一条测试的业务数据

 

INSERT INTO `leaf_alloc` (`biz_tag`, `max_id`, `step`, `description`, `update_time`) VALUES ('leaf-segment-test', '0', '10', '测试', '2020-02-28 10:41:03');
  • biz_tag:针对不同业务需求,用biz_tag字段来隔离,如果以后需要扩容时,只需对biz_tag分库分表即可
  • max_id:当前业务号段的最大值,用于计算下一个号段
  • step:步长,也就是每次获取ID的数量
  • description:对于业务的描述,没啥好说的

将Leaf项目下载到本地:https://github.com/Meituan-Dianping/Leaf

修改一下项目中的leaf.properties文件,添加数据库配置

 

leaf.name=com.sankuai.leaf.opensource.testleaf.segment.enable=trueleaf.jdbc.url=jdbc:mysql://127.0.0.1:3306/xin-master?useUnicode=true&characterEncoding=utf8leaf.jdbc.username=junkangleaf.jdbc.password=junkangleaf.snowflake.enable=false

注意:leaf.snowflake.enable 与 leaf.segment.enable 是无法同时开启的,否则项目将无法启动。

配置相当的简单,直接启动LeafServerApplication后就OK了,接下来测试一下,leaf是基于Http请求的发号服务, LeafController 中只有两个方法,一个号段接口,一个snowflake接口,key就是数据库中预先插入的业务biz_tag。

 

@RestControllerpublic class LeafController {    private Logger logger = LoggerFactory.getLogger(LeafController.class);    @Autowired    private SegmentService segmentService;    @Autowired    private SnowflakeService snowflakeService;    /**     * 号段模式     * @param key     * @return     */    @RequestMapping(value = "/api/segment/get/{key}")    public String getSegmentId(@PathVariable("key") String key) {        return get(key, segmentService.getId(key));    }    /**     * 雪花算法模式     * @param key     * @return     */    @RequestMapping(value = "/api/snowflake/get/{key}")    public String getSnowflakeId(@PathVariable("key") String key) {        return get(key, snowflakeService.getId(key));    }    private String get(@PathVariable("key") String key, Result id) {        Result result;        if (key == null || key.isEmpty()) {            throw new NoKeyException();        }        result = id;        if (result.getStatus().equals(Status.EXCEPTION)) {            throw new LeafServerException(result.toString());        }        return String.valueOf(result.getId());    }

访问:http://127.0.0.1:8080/api/segment/get/leaf-segment-test,结果正常返回,感觉没毛病,但当查了一下数据库表中数据时发现了一个问题。

不能错过的分布式ID生成器(Leaf ),好用的一批

不能错过的分布式ID生成器(Leaf ),好用的一批

通常在用号段模式的时候,取号段的时机是在前一个号段消耗完的时候进行的,可刚刚才取了一个ID,数据库中却已经更新了max_id,也就是说leaf已经多获取了一个号段,这是什么鬼操作?

不能错过的分布式ID生成器(Leaf ),好用的一批

Leaf为啥要这么设计呢?

Leaf 希望能在DB中取号段的过程中做到无阻塞!

当号段耗尽时再去DB中取下一个号段,如果此时网络发生抖动,或者DB发生慢查询,业务系统拿不到号段,就会导致整个系统的响应时间变慢,对流量巨大的业务,这是不可容忍的。

所以Leaf在当前号段消费到某个点时,就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做很大程度上的降低了系统的风险。

那么某个点到底是什么时候呢?

这里做了一个实验,号段设置长度为step=10,max_id=1,

不能错过的分布式ID生成器(Leaf ),好用的一批

当我拿第一个ID时,看到号段增加了,1/10

不能错过的分布式ID生成器(Leaf ),好用的一批

不能错过的分布式ID生成器(Leaf ),好用的一批

当我拿第三个Id时,看到号段又增加了,3/10

不能错过的分布式ID生成器(Leaf ),好用的一批

不能错过的分布式ID生成器(Leaf ),好用的一批

Leaf采用双buffer的方式,它的服务内部有两个号段缓存区segment。当前号段已消耗10%时,还没能拿到下一个号段,则会另启一个更新线程去更新下一个号段。

简而言之就是Leaf保证了总是会多缓存两个号段,即便哪一时刻数据库挂了,也会保证发号服务可以正常工作一段时间。

不能错过的分布式ID生成器(Leaf ),好用的一批

通常推荐号段(segment)长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响。

优点:

  • Leaf服务可以很方便的线性扩展,性能完全能够支撑大多数业务场景。
  • 容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务。

缺点:

  • ID号码不够随机,能够泄露发号数量的信息,不太安全。
  • DB宕机会造成整个系统不可用(用到数据库的都有可能)。

二、Leaf-snowflake

Leaf-snowflake基本上就是沿用了snowflake的设计,ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 机房ID(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。

Leaf-snowflake不同于原始snowflake算法地方,主要是在workId的生成上,Leaf-snowflake依靠Zookeeper生成workId,也就是上边的机器ID(占5比特)+ 机房ID(占5比特)。Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。

不能错过的分布式ID生成器(Leaf ),好用的一批

Leaf-snowflake启动服务的过程大致如下:

  • 启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。
  • 如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。
  • 如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务。

但Leaf-snowflake对Zookeeper是一种弱依赖关系,除了每次会去ZK拿数据以外,也会在本机文件系统上缓存一个workerID文件。一旦ZooKeeper出现问题,恰好机器出现故障需重启时,依然能够保证服务正常启动。

启动Leaf-snowflake模式也比较简单,启动本地ZooKeeper,修改一下项目中的leaf.properties文件,关闭leaf.segment模式,启用leaf.snowflake模式即可。

 

leaf.segment.enable=false#leaf.jdbc.url=jdbc:mysql://127.0.0.1:3306/xin-master?useUnicode=true&characterEncoding=utf8#leaf.jdbc.username=junkang#leaf.jdbc.password=junkangleaf.snowflake.enable=trueleaf.snowflake.zk.address=127.0.0.1leaf.snowflake.port=2181

 

    /**     * 雪花算法模式     * @param key     * @return     */    @RequestMapping(value = "/api/snowflake/get/{key}")    public String getSnowflakeId(@PathVariable("key") String key) {        return get(key, snowflakeService.getId(key));    }

测试一下,访问:http://127.0.0.1:8080/api/snowflake/get/leaf-segment-test

不能错过的分布式ID生成器(Leaf ),好用的一批

优点:

  • ID号码是趋势递增的8byte的64位数字,满足上述数据库存储的主键要求。

缺点:

  • 依赖ZooKeeper,存在服务不可用风险(实在不知道有啥缺点了)

三、Leaf监控

请求地址:http://127.0.0.1:8080/cache

针对服务自身的监控,Leaf提供了Web层的内存数据映射界面,可以实时看到所有号段的下发状态。比如每个号段双buffer的使用情况,当前ID下发到了哪个位置等信息都可以在Web界面上查看。

不能错过的分布式ID生成器(Leaf ),好用的一批

总结

对于Leaf具体使用哪种模式,还是根据具体的业务场景使用,本文并没有对Leaf源码做过多的分析,因为Leaf 代码量简洁很好阅读。