原始链接
数据特征工程
- 学习特征预处理、缺失值、异常值处理、数据分桶等特征处理方法
- 学习特征交互、编码、选择的相应方法
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from tqdm import tqdm
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.preprocessing import MinMaxScaler
import xgboost as xgb
import lightgbm as lgb
# from catboost import CatBoostRegressor
import warnings
from sklearn.model_selection import StratifiedKFold, KFold
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, log_loss
warnings.filterwarnings('ignore')
data_train =pd.read_csv('dataset/train.csv')
data_test_a = pd.read_csv('dataset/testA.csv')
确实值、异常值、对象类型值处理
numerical_fea = list(data_train.select_dtypes(exclude=['object']).columns)
category_fea = list(filter(lambda x: x not in numerical_fea,list(data_train.columns)))
label = 'isDefault'
numerical_fea.remove(label)
缺失值填充
-
把所有缺失值替换为指定的值0
data_train = data_train.fillna(0)
-
向用缺失值上面的值替换缺失值
data_train = data_train.fillna(axis=0,method=‘ffill’)
-
纵向用缺失值下面的值替换缺失值,且设置最多只填充两个连续的缺失值
data_train = data_train.fillna(axis=0,method=‘bfill’,limit=2)
#缺失值查看
data_train.isnull().sum()
id 0
loanAmnt 0
term 0
interestRate 0
installment 0
grade 0
subGrade 0
employmentTitle 1
employmentLength 46799
homeOwnership 0
annualIncome 0
verificationStatus 0
issueDate 0
isDefault 0
purpose 0
postCode 1
regionCode 0
dti 239
delinquency_2years 0
ficoRangeLow 0
ficoRangeHigh 0
openAcc 0
pubRec 0
pubRecBankruptcies 405
revolBal 0
revolUtil 531
totalAcc 0
initialListStatus 0
applicationType 0
earliesCreditLine 0
title 1
policyCode 0
n0 40270
n1 40270
n2 40270
n2.1 40270
n4 33239
n5 40270
n6 40270
n7 40270
n8 40271
n9 40270
n10 33239
n11 69752
n12 40270
n13 40270
n14 40270
dtype: int64
#用平均值填充数值型
data_train[numerical_fea] = data_train[numerical_fea].fillna(data_train[numerical_fea].median())
data_test_a[numerical_fea] = data_test_a[numerical_fea].fillna(data_test_a[numerical_fea].median())#用众数填充类别型数据
data_train[category_fea] = data_train[category_fea].fillna(data_train[category_fea].mode())
data_test_a[category_fea] = data_test_a[category_fea].fillna(data_test_a[category_fea].mode())
data_train.isnull().sum()
id 0
loanAmnt 0
term 0
interestRate 0
installment 0
grade 0
subGrade 0
employmentTitle 0
employmentLength 46799
homeOwnership 0
annualIncome 0
verificationStatus 0
issueDate 0
isDefault 0
purpose 0
postCode 0
regionCode 0
dti 0
delinquency_2years 0
ficoRangeLow 0
ficoRangeHigh 0
openAcc 0
pubRec 0
pubRecBankruptcies 0
revolBal 0
revolUtil 0
totalAcc 0
initialListStatus 0
applicationType 0
earliesCreditLine 0
title 0
policyCode 0
n0 0
n1 0
n2 0
n2.1 0
n4 0
n5 0
n6 0
n7 0
n8 0
n9 0
n10 0
n11 0
n12 0
n13 0
n14 0
dtype: int64
#类别特征
category_fea
['grade', 'subGrade', 'employmentLength', 'issueDate', 'earliesCreditLine']
时间格式特别处理
转换成距离以某一时间点(最小时间)的差值(天数)
for data in [data_train, data_test_a]:data["issueDate"] = pd.to_datetime(data["issueDate"], format = "%Y-%m-%d")startdate = datetime.datetime.strptime('2007-06-01', '%Y-%m-%d')#构造时间特征data['issueDateDT'] = data['issueDate'].apply(lambda x: x-startdate).dt.days
data_train['employmentLength'].value_counts(dropna=False).sort_index()
1 year 52489
10+ years 262753
2 years 72358
3 years 64152
4 years 47985
5 years 50102
6 years 37254
7 years 35407
8 years 36192
9 years 30272
< 1 year 64237
NaN 46799
Name: employmentLength, dtype: int64
#对象类型转换的数值
def employmentLength_to_int(s):if pd.isnull(s):return selse:return np.int8(s.split()[0])
for data in [data_train, data_test_a]:data["employmentLength"].replace(to_replace = "10+ years", value="10 years", inplace = True)data["employmentLength"].replace("< 1 year", "0 years", inplace = True)data["employmentLength"] = data["employmentLength"].apply(employmentLength_to_int)
data["employmentLength"].value_counts(dropna = False).sort_index()
0.0 159891.0 131822.0 182073.0 160114.0 118335.0 125436.0 93287.0 88238.0 89769.0 759410.0 65772
NaN 11742
Name: employmentLength, dtype: int64
#对earliesCreditLine进行预处理
data_train['earliesCreditLine'].sample(5) #随机抽样5个
424703 Dec-1993
110607 May-2008
439311 Nov-2009
489048 Sep-2007
219141 Jul-1985
Name: earliesCreditLine, dtype: object
for data in [data_train, data_test_a]:data['earliesCreditLine'] = data['earliesCreditLine'].apply(lambda s:int(s[-4:]))
类别特征处理
# 部分类别特征
cate_features = ['grade', 'subGrade', 'employmentTitle', 'homeOwnership', 'verificationStatus', 'purpose', 'postCode', 'regionCode', \'applicationType', 'initialListStatus', 'title', 'policyCode']
for f in cate_features:print(f, '类型数:', data[f].nunique())
grade 类型数: 7
subGrade 类型数: 35
employmentTitle 类型数: 79282
homeOwnership 类型数: 6
verificationStatus 类型数: 3
purpose 类型数: 14
postCode 类型数: 889
regionCode 类型数: 51
applicationType 类型数: 2
initialListStatus 类型数: 2
title 类型数: 12058
policyCode 类型数: 1
像等级这种类别特征,是有优先级的可以labelencode或者自映射
get_dummies获取哑编码
for data in [data_train, data_test_a]:data['grade'] = data['grade'].map({
'A':1,'B':2,'C':3,'D':4,'E':5,'F':6,'G':7})
# 类型数在2之上,又不是高维稀疏的,且纯分类特征
for data in [data_train, data_test_a]:data = pd.get_dummies(data, columns=['subGrade', 'homeOwnership', 'verificationStatus', 'purpose', 'regionCode'], drop_first=True)
异常值处理
均方差法
def find_outliers_by_3segama(data,fea):data_std = np.std(data[fea])data_mean = np.mean(data[fea])outliers_cut_off = data_std * 3lower_rule = data_mean - outliers_cut_offupper_rule = data_mean + outliers_cut_offdata[fea+'_outliers'] = data[fea].apply(lambda x:str('异常值') if x > upper_rule or x < lower_rule else '正常值')return data
#进一步分析变量异常值和目标变量的关系
data_train = data_train.copy()
for fea in numerical_fea:data_train = find_outliers_by_3segama(data_train,fea)print(data_train[fea+'_outliers'].value_counts())print(data_train.groupby(fea+'_outliers')['isDefault'].sum())print('*'*10)
正常值 800000
Name: id_outliers, dtype: int64
id_outliers
正常值 159610
Name: isDefault, dtype: int64
**********
正常值 800000
Name: loanAmnt_outliers, dtype: int64
loanAmnt_outliers
正常值 159610
Name: isDefault, dtype: int64
**********
正常值 800000
Name: term_outliers, dtype: int64
term_outliers
正常值 159610
Name: isDefault, dtype: int64
**********
正常值 794259
异常值 5741
Name: interestRate_outliers, dtype: int64
interestRate_outliers
异常值 2916
正常值 156694
Name: isDefault, dtype: int64
**********
正常值 792046
异常值 7954
Name: installment_outliers, dtype: int64
installment_outliers
异常值 2152
正常值 157458
Name: isDefault, dtype: int64
**********
正常值 800000
Name: employmentTitle_outliers, dtype: int64
employmentTitle_outliers
正常值 159610
Name: isDefault, dtype: int64
**********
正常值 799701
异常值 299
Name: homeOwnership_outliers, dtype: int64
homeOwnership_outliers
异常值 62
正常值 159548
Name: isDefault, dtype: int64
**********
正常值 793973
异常值 6027
Name: annualIncome_outliers, dtype: int64
annualIncome_outliers
异常值 756
正常值 158854
Name: isDefault, dtype: int64
**********
正常值 800000
Name: verificationStatus_outliers, dtype: int64
verificationStatus_outliers
正常值 159610
Name: isDefault, dtype: int64
**********
正常值 783003
异常值 16997
Name: purpose_outliers, dtype: int64
purpose_outliers
异常值 3635
正常值 155975
Name: isDefault, dtype: int64
**********
正常值 798931
异常值 1069
Name: postCode_outliers, dtype: int64
postCode_outliers
异常值 221
正常值 159389
Name: isDefault, dtype: int64
**********
正常值 799994
异常值 6
Name: regionCode_outliers, dtype: int64
regionCode_outliers
异常值 1
正常值 159609
Name: isDefault, dtype: int64
**********
正常值 798440
异常值 1560
Name: dti_outliers, dtype: int64
dti_outliers
异常值 466
正常值 159144
Name: isDefault, dtype: int64
**********
正常值 778245
异常值 21755
Name: delinquency_2years_outliers, dtype: int64
delinquency_2years_outliers
异常值 5089
正常值 154521
Name: isDefault, dtype: int64
**********
正常值 788261
异常值 11739
Name: ficoRangeLow_outliers, dtype: int64
ficoRangeLow_outliers
异常值 778
正常值 158832
Name: isDefault, dtype: int64
**********
正常值 788261
异常值 11739
Name: ficoRangeHigh_outliers, dtype: int64
ficoRangeHigh_outliers
异常值 778
正常值 158832
Name: isDefault, dtype: int64
**********
正常值 790889
异常值 9111
Name: openAcc_outliers, dtype: int64
openAcc_outliers
异常值 2195
正常值 157415
Name: isDefault, dtype: int64
**********
正常值 792471
异常值 7529
Name: pubRec_outliers, dtype: int64
pubRec_outliers
异常值 1701
正常值 157909
Name: isDefault, dtype: int64
**********
正常值 794120
异常值 5880
Name: pubRecBankruptcies_outliers, dtype: int64
pubRecBankruptcies_outliers
异常值 1423
正常值 158187
Name: isDefault, dtype: int64
**********
正常值 790001
异常值 9999
Name: revolBal_outliers, dtype: int64
revolBal_outliers
异常值 1359
正常值 158251
Name: isDefault, dtype: int64
**********
正常值 799948
异常值 52
Name: revolUtil_outliers, dtype: int64
revolUtil_outliers
异常值 23
正常值 159587
Name: isDefault, dtype: int64
**********
正常值 791663
异常值 8337
Name: totalAcc_outliers, dtype: int64
totalAcc_outliers
异常值 1668
正常值 157942
Name: isDefault, dtype: int64
**********
正常值 800000
Name: initialListStatus_outliers, dtype: int64
initialListStatus_outliers
正常值 159610
Name: isDefault, dtype: int64
**********
正常值 784586
异常值 15414
Name: applicationType_outliers, dtype: int64
applicationType_outliers
异常值 3875
正常值 155735
Name: isDefault, dtype: int64
**********
正常值 775134
异常值 24866
Name: title_outliers, dtype: int64
title_outliers
异常值 3900
正常值 155710
Name: isDefault, dtype: int64
**********
正常值 800000
Name: policyCode_outliers, dtype: int64
policyCode_outliers
正常值 159610
Name: isDefault, dtype: int64
**********
正常值 782773
异常值 17227
Name: n0_outliers, dtype: int64
n0_outliers
异常值 3485
正常值 156125
Name: isDefault, dtype: int64
**********
正常值 790500
异常值 9500
Name: n1_outliers, dtype: int64
n1_outliers
异常值 2491
正常值 157119
Name: isDefault, dtype: int64
**********
正常值 789067
异常值 10933
Name: n2_outliers, dtype: int64
n2_outliers
异常值 3205
正常值 156405
Name: isDefault, dtype: int64
**********
正常值 789067
异常值 10933
Name: n2.1_outliers, dtype: int64
n2.1_outliers
异常值 3205
正常值 156405
Name: isDefault, dtype: int64
**********
正常值 788660
异常值 11340
Name: n4_outliers, dtype: int64
n4_outliers
异常值 2476
正常值 157134
Name: isDefault, dtype: int64
**********
正常值 790355
异常值 9645
Name: n5_outliers, dtype: int64
n5_outliers
异常值 1858
正常值 157752
Name: isDefault, dtype: int64
**********
正常值 786006
异常值 13994
Name: n6_outliers, dtype: int64
n6_outliers
异常值 3182
正常值 156428
Name: isDefault, dtype: int64
**********
正常值 788430
异常值 11570
Name: n7_outliers, dtype: int64
n7_outliers
异常值 2746
正常值 156864
Name: isDefault, dtype: int64
**********
正常值 789625
异常值 10375
Name: n8_outliers, dtype: int64
n8_outliers
异常值 2131
正常值 157479
Name: isDefault, dtype: int64
**********
正常值 786384
异常值 13616
Name: n9_outliers, dtype: int64
n9_outliers
异常值 3953
正常值 155657
Name: isDefault, dtype: int64
**********
正常值 788979
异常值 11021
Name: n10_outliers, dtype: int64
n10_outliers
异常值 2639
正常值 156971
Name: isDefault, dtype: int64
**********
正常值 799434
异常值 566
Name: n11_outliers, dtype: int64
n11_outliers
异常值 112
正常值 159498
Name: isDefault, dtype: int64
**********
正常值 797585
异常值 2415
Name: n12_outliers, dtype: int64
n12_outliers
异常值 545
正常值 159065
Name: isDefault, dtype: int64
**********
正常值 788907
异常值 11093
Name: n13_outliers, dtype: int64
n13_outliers
异常值 2482
正常值 157128
Name: isDefault, dtype: int64
**********
正常值 788884
异常值 11116
Name: n14_outliers, dtype: int64
n14_outliers
异常值 3364
正常值 156246
Name: isDefault, dtype: int64
**********
#删除异常值 因为删除了异常值,所以需要reset_index重置索引
for fea in numerical_fea:data_train = data_train[data_train[fea+'_outliers']=='正常值']data_train = data_train.reset_index(drop=True) #drop = true,表示不保留原始index,默认会把原始index作为数据列保存
数据分桶
#固定宽度分箱
# 通过除法映射到间隔均匀的分箱中,每个分箱的取值范围都是loanAmnt/1000 ,loanAmnt贷款金额
data['loanAmnt_bin1'] = np.floor_divide(data['loanAmnt'], 1000)
## 通过对数函数映射到指数宽度分箱
data['loanAmnt_bin2'] = np.floor(np.log10(data['loanAmnt']))
#分位数分箱 将一组数据进行均匀分箱,10表示分为10组
data['loanAmnt_bin3'] = pd.qcut(data['loanAmnt'], 10, labels=False)
特征交互
特征之间的交互可衍生出新的特征
for col in ['grade', 'subGrade']: temp_dict = data_train.groupby([col])['isDefault'].agg(['mean']).reset_index().rename(columns={
'mean': col + '_target_mean'})temp_dict.index = temp_dict[col].valuestemp_dict = temp_dict[col + '_target_mean'].to_dict()data_train[col + '_target_mean'] = data_train[col].map(temp_dict)data_test_a[col + '_target_mean'] = data_test_a[col].map(temp_dict)
# 其他衍生变量 mean 和 std
for df in [data_train, data_test_a]:for item in ['n0','n1','n2','n2.1','n4','n5','n6','n7','n8','n9','n10','n11','n12','n13','n14']:df['grade_to_mean_' + item] = df['grade'] / df.groupby([item])['grade'].transform('mean')df['grade_to_std_' + item] = df['grade'] / df.groupby([item])['grade'].transform('std')
特征编码
labelEncode 直接放入树模型中
#label-encode:subGrade,postCode,title
# 高维类别特征需要进行转换
for col in tqdm(['employmentTitle', 'postCode', 'title','subGrade']):le = LabelEncoder()le.fit(list(data_train[col].astype(str).values) + list(data_test_a[col].astype(str).values))data_train[col] = le.transform(list(data_train[col].astype(str).values))data_test_a[col] = le.transform(list(data_test_a[col].astype(str).values))
print('Label Encoding 完成')
100%|████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:07<00:00, 1.81s/it]Label Encoding 完成
逻辑回归等模型要单独增加的特征工程
- 对特征做归一化,去除相关性高的特征
- 归一化目的是让训练过程更好更快的收敛,避免特征大吃小的问题
- 去除相关性是增加模型的可解释性,加快预测过程。
归一化伪代码:
# 举例归一化过程
#伪代码
for fea in [要归一化的特征列表]:data[fea] = ((data[fea] - np.min(data[fea])) / (np.max(data[fea]) - np.min(data[fea])))
特征选择
放弃一些不必要的特征
特征选择的方法:
- Filter
方差选择法
相关系数法(pearson 相关系数)
卡方检验
互信息法 - Wrapper (RFE)
递归特征消除法 - Embedded
基于惩罚项的特征选择法
基于树模型的特征选择