当前位置: 代码迷 >> 综合 >> 金融风控-贷款违约预测-Task02 EDA数据理解
  详细解决方案

金融风控-贷款违约预测-Task02 EDA数据理解

热度:0   发布时间:2024-02-20 07:34:28.0

金融风控学习赛

https://tianchi.aliyun.com/competition/entrance/531830/information

一、赛题数据

赛题以预测用户贷款是否违约为任务,数据集报名后可见并可下载,该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B,同时会对employmentTitle、purpose、postCode和title等信息进行脱敏。

导入数据分析相关库

# 导入标准库
import io, os, sys, types, time, datetime, math, random, requests, subprocess,io, tempfile, math# 导入第三方库
# 数据处理
import numpy as np
import pandas as pd# 数据可视化
import matplotlib.pyplot as plt
import missingno
import seaborn as sns 
# from pandas.tools.plotting import scatter_matrix # No module named 'pandas.tools'
from mpl_toolkits.mplot3d import Axes3D
# plt.style.use('seaborn') # 改变图像风格
plt.rcParams['font.family'] = ['Arial Unicode MS', 'Microsoft Yahei', 'SimHei', 'sans-serif']  # 解决中文乱码
plt.rcParams['axes.unicode_minus'] = False  # simhei黑体字 负号乱码 解决# 特征选择和编码
from sklearn.feature_selection import RFE, RFECV
from sklearn.svm import SVR
from sklearn.decomposition import PCA
from sklearn import preprocessing
from sklearn.preprocessing import OneHotEncoder, LabelEncoder, label_binarize # Imputer
# from fancyimpute import BiScaler, KNN, NuclearNormMinimization, SoftImpute# 机器学习
import sklearn.ensemble as ske
from sklearn import datasets, model_selection, tree, preprocessing, metrics, linear_model
from sklearn.svm import LinearSVC
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LinearRegression, LogisticRegression, Ridge, Lasso, SGDClassifier
from sklearn.tree import DecisionTreeClassifier# 网格搜索、随机搜索
import scipy.stats as st
from scipy.stats import randint as sp_randint
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import train_test_split# 模型度量(分类)
from sklearn.metrics import precision_recall_fscore_support, roc_curve, auc# 警告处理 
import warnings
warnings.filterwarnings('ignore')# 在Jupyter上画图
%matplotlib inline# 数据预处理
import numpy as np
import scipy as sc
import scipy.fftpack
import sklearn as sk
import matplotlib.pyplot as plt
import ewtpy
import scipy.fftpack# 绘图工具包
import seaborn as sns
import pyecharts.options as opts
from pyecharts.charts import Line, Grid

数据集导入

  • train
  • test
# 数据集路径train_path = 'train.csv'
test_path = 'testA.csv'
dataset_path = './'
data_train_path = dataset_path + train_path
data_test_path = dataset_path + test_path# 2.数据集csv读入
train = pd.read_csv(data_train_path)
test = pd.read_csv(data_test_path)

二、数据分析

  • 数据总体了解:
    • 读取数据集并了解数据集大小,原始特征维度;
    • 通过info熟悉数据类型;
    • 粗略查看数据集中各特征基本统计量;
  • 缺失值和唯一值:
    • 查看数据缺失值情况
    • 查看唯一值特征情况
  • 深入数据-查看数据类型
    • 类别型数据
    • 数值型数据
      • 离散数值型数据
      • 连续数值型数据
  • 数据间相关关系
    • 特征和特征之间关系
    • 特征和目标变量之间关系
  • 用pandas_profiling生成数据报告

数据集大小和类型

  • train: (800000, 47)
  • test : (200000, 46)

我们可以看到数据量还是比较大的,对内层空间有一定要求

print(train.shape,test.shape)
print('--'*30)
train.info()
print('--'*30)
test.info()
(800000, 47) (200000, 46)
------------------------------------------------------------
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 800000 entries, 0 to 799999
Data columns (total 47 columns):
id                    800000 non-null int64
loanAmnt              800000 non-null float64
term                  800000 non-null int64
interestRate          800000 non-null float64
installment           800000 non-null float64
grade                 800000 non-null object
subGrade              800000 non-null object
employmentTitle       799999 non-null float64
employmentLength      753201 non-null object
homeOwnership         800000 non-null int64
annualIncome          800000 non-null float64
verificationStatus    800000 non-null int64
issueDate             800000 non-null object
isDefault             800000 non-null int64
purpose               800000 non-null int64
postCode              799999 non-null float64
regionCode            800000 non-null int64
dti                   799761 non-null float64
delinquency_2years    800000 non-null float64
ficoRangeLow          800000 non-null float64
ficoRangeHigh         800000 non-null float64
openAcc               800000 non-null float64
pubRec                800000 non-null float64
pubRecBankruptcies    799595 non-null float64
revolBal              800000 non-null float64
revolUtil             799469 non-null float64
totalAcc              800000 non-null float64
initialListStatus     800000 non-null int64
applicationType       800000 non-null int64
earliesCreditLine     800000 non-null object
title                 799999 non-null float64
policyCode            800000 non-null float64
n0                    759730 non-null float64
n1                    759730 non-null float64
n2                    759730 non-null float64
n3                    759730 non-null float64
n4                    766761 non-null float64
n5                    759730 non-null float64
n6                    759730 non-null float64
n7                    759730 non-null float64
n8                    759729 non-null float64
n9                    759730 non-null float64
n10                   766761 non-null float64
n11                   730248 non-null float64
n12                   759730 non-null float64
n13                   759730 non-null float64
n14                   759730 non-null float64
dtypes: float64(33), int64(9), object(5)
memory usage: 286.9+ MB
------------------------------------------------------------
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200000 entries, 0 to 199999
Data columns (total 46 columns):
id                    200000 non-null int64
loanAmnt              200000 non-null float64
term                  200000 non-null int64
interestRate          200000 non-null float64
installment           200000 non-null float64
grade                 200000 non-null object
subGrade              200000 non-null object
employmentTitle       200000 non-null float64
employmentLength      188258 non-null object
homeOwnership         200000 non-null int64
annualIncome          200000 non-null float64
verificationStatus    200000 non-null int64
issueDate             200000 non-null object
purpose               200000 non-null int64
postCode              200000 non-null float64
regionCode            200000 non-null int64
dti                   199939 non-null float64
delinquency_2years    200000 non-null float64
ficoRangeLow          200000 non-null float64
ficoRangeHigh         200000 non-null float64
openAcc               200000 non-null float64
pubRec                200000 non-null float64
pubRecBankruptcies    199884 non-null float64
revolBal              200000 non-null float64
revolUtil             199873 non-null float64
totalAcc              200000 non-null float64
initialListStatus     200000 non-null int64
applicationType       200000 non-null int64
earliesCreditLine     200000 non-null object
title                 200000 non-null float64
policyCode            200000 non-null float64
n0                    189889 non-null float64
n1                    189889 non-null float64
n2                    189889 non-null float64
n3                    189889 non-null float64
n4                    191606 non-null float64
n5                    189889 non-null float64
n6                    189889 non-null float64
n7                    189889 non-null float64
n8                    189889 non-null float64
n9                    189889 non-null float64
n10                   191606 non-null float64
n11                   182425 non-null float64
n12                   189889 non-null float64
n13                   189889 non-null float64
n14                   189889 non-null float64
dtypes: float64(33), int64(8), object(5)
memory usage: 70.2+ MB
# 字段特征
train.describe()
id loanAmnt term interestRate installment employmentTitle homeOwnership annualIncome verificationStatus isDefault purpose postCode regionCode dti delinquency_2years ficoRangeLow ficoRangeHigh openAcc pubRec pubRecBankruptcies revolBal revolUtil totalAcc initialListStatus applicationType title policyCode n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14
count 800000.000000 800000.000000 800000.000000 800000.000000 800000.000000 799999.000000 800000.000000 8.000000e+05 800000.000000 800000.000000 800000.000000 799999.000000 800000.000000 799761.000000 800000.000000 800000.000000 800000.000000 800000.000000 800000.000000 799595.000000 8.000000e+05 799469.000000 800000.000000 800000.000000 800000.000000 799999.000000 800000.0 759730.000000 759730.000000 759730.000000 759730.000000 766761.000000 759730.000000 759730.000000 759730.000000 759729.000000 759730.000000 766761.000000 730248.000000 759730.000000 759730.000000 759730.000000
mean 399999.500000 14416.818875 3.482745 13.238391 437.947723 72005.351714 0.614213 7.613391e+04 1.009683 0.199513 1.745982 258.535648 16.385758 18.284557 0.318239 696.204081 700.204226 11.598020 0.214915 0.134163 1.622871e+04 51.790734 24.998861 0.416953 0.019267 1754.113589 1.0 0.511932 3.642330 5.642648 5.642648 4.735641 8.107937 8.575994 8.282953 14.622488 5.592345 11.643896 0.000815 0.003384 0.089366 2.178606
std 230940.252013 8716.086178 0.855832 4.765757 261.460393 106585.640204 0.675749 6.894751e+04 0.782716 0.399634 2.367453 200.037446 11.036679 11.150155 0.880325 31.865995 31.866674 5.475286 0.606467 0.377471 2.245802e+04 24.516126 11.999201 0.493055 0.137464 7941.474040 0.0 1.333266 2.246825 3.302810 3.302810 2.949969 4.799210 7.400536 4.561689 8.124610 3.216184 5.484104 0.030075 0.062041 0.509069 1.844377
min 0.000000 500.000000 3.000000 5.310000 15.690000 0.000000 0.000000 0.000000e+00 0.000000 0.000000 0.000000 0.000000 0.000000 -1.000000 0.000000 630.000000 634.000000 0.000000 0.000000 0.000000 0.000000e+00 0.000000 2.000000 0.000000 0.000000 0.000000 1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 199999.750000 8000.000000 3.000000 9.750000 248.450000 427.000000 0.000000 4.560000e+04 0.000000 0.000000 0.000000 103.000000 8.000000 11.790000 0.000000 670.000000 674.000000 8.000000 0.000000 0.000000 5.944000e+03 33.400000 16.000000 0.000000 0.000000 0.000000 1.0 0.000000 2.000000 3.000000 3.000000 3.000000 5.000000 4.000000 5.000000 9.000000 3.000000 8.000000 0.000000 0.000000 0.000000 1.000000
50% 399999.500000 12000.000000 3.000000 12.740000 375.135000 7755.000000 1.000000 6.500000e+04 1.000000 0.000000 0.000000 203.000000 14.000000 17.610000 0.000000 690.000000 694.000000 11.000000 0.000000 0.000000 1.113200e+04 52.100000 23.000000 0.000000 0.000000 1.000000 1.0 0.000000 3.000000 5.000000 5.000000 4.000000 7.000000 7.000000 7.000000 13.000000 5.000000 11.000000 0.000000 0.000000 0.000000 2.000000
75% 599999.250000 20000.000000 3.000000 15.990000 580.710000 117663.500000 1.000000 9.000000e+04 2.000000 0.000000 4.000000 395.000000 22.000000 24.060000 0.000000 710.000000 714.000000 14.000000 0.000000 0.000000 1.973400e+04 70.700000 32.000000 1.000000 0.000000 5.000000 1.0 0.000000 5.000000 7.000000 7.000000 6.000000 11.000000 11.000000 10.000000 19.000000 7.000000 14.000000 0.000000 0.000000 0.000000 3.000000
max 799999.000000 40000.000000 5.000000 30.990000 1715.420000 378351.000000 5.000000 1.099920e+07 2.000000 1.000000 13.000000 940.000000 50.000000 999.000000 39.000000 845.000000 850.000000 86.000000 86.000000 12.000000 2.904836e+06 892.300000 162.000000 1.000000 1.000000 61680.000000 1.0 51.000000 33.000000 63.000000 63.000000 49.000000 70.000000 132.000000 79.000000 128.000000 45.000000 82.000000 4.000000 4.000000 39.000000 30.000000
test.describe()
id loanAmnt term interestRate installment employmentTitle homeOwnership annualIncome verificationStatus purpose postCode regionCode dti delinquency_2years ficoRangeLow ficoRangeHigh openAcc pubRec pubRecBankruptcies revolBal revolUtil totalAcc initialListStatus applicationType title policyCode n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14
count 200000.000000 200000.000000 200000.000000 200000.000000 200000.000000 200000.000000 200000.000000 2.000000e+05 200000.000000 200000.000000 200000.000000 200000.000000 199939.000000 200000.000000 200000.000000 200000.000000 200000.000000 200000.00000 199884.000000 2.000000e+05 199873.000000 200000.000000 200000.000000 200000.000000 200000.000000 200000.0 189889.000000 189889.000000 189889.000000 189889.000000 191606.000000 189889.000000 189889.000000 189889.000000 189889.000000 189889.000000 191606.000000 182425.000000 189889.000000 189889.000000 189889.000000
mean 899999.500000 14436.954125 3.481690 13.244800 438.737804 72435.750740 0.614100 7.645184e+04 1.010430 1.744410 258.259535 16.430830 18.291282 0.315895 696.166400 700.166530 11.580340 0.21553 0.135293 1.625583e+04 51.875121 24.921810 0.416650 0.019465 1778.180570 1.0 0.507865 3.648110 5.647141 5.647141 4.732545 8.093976 8.527334 8.274840 14.592551 5.596296 11.626891 0.000833 0.003618 0.088341 2.180316
std 57735.171256 8737.430326 0.855195 4.766528 262.246698 106892.374933 0.675465 7.766237e+04 0.781732 2.367497 199.752214 11.061279 11.493806 0.876316 31.852619 31.853228 5.455525 0.60653 0.380665 2.243082e+04 24.555849 11.943628 0.493005 0.138153 7983.247915 0.0 1.315019 2.257779 3.308588 3.308588 2.959386 4.803759 7.303106 4.550902 8.109357 3.220978 5.464619 0.030516 0.064276 0.505161 1.841987
min 800000.000000 500.000000 3.000000 5.310000 14.010000 0.000000 0.000000 0.000000e+00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 625.000000 629.000000 0.000000 0.00000 0.000000 0.000000e+00 0.000000 2.000000 0.000000 0.000000 0.000000 1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 849999.750000 8000.000000 3.000000 9.750000 248.890000 420.000000 0.000000 4.600000e+04 0.000000 0.000000 103.000000 8.000000 11.830000 0.000000 670.000000 674.000000 8.000000 0.00000 0.000000 5.940000e+03 33.500000 16.000000 0.000000 0.000000 0.000000 1.0 0.000000 2.000000 3.000000 3.000000 3.000000 5.000000 4.000000 5.000000 9.000000 3.000000 8.000000 0.000000 0.000000 0.000000 1.000000
50% 899999.500000 12000.000000 3.000000 12.740000 375.430000 7836.000000 1.000000 6.500000e+04 1.000000 0.000000 203.000000 14.000000 17.620000 0.000000 690.000000 694.000000 11.000000 0.00000 0.000000 1.114000e+04 52.300000 23.000000 0.000000 0.000000 2.000000 1.0 0.000000 3.000000 5.000000 5.000000 4.000000 7.000000 7.000000 7.000000 13.000000 5.000000 11.000000 0.000000 0.000000 0.000000 2.000000
75% 949999.250000 20000.000000 3.000000 15.990000 580.942500 119739.250000 1.000000 9.000000e+04 2.000000 4.000000 392.000000 22.000000 24.080000 0.000000 710.000000 714.000000 14.000000 0.00000 0.000000 1.977925e+04 70.800000 32.000000 1.000000 0.000000 5.000000 1.0 0.000000 5.000000 7.000000 7.000000 6.000000 11.000000 11.000000 10.000000 19.000000 7.000000 14.000000 0.000000 0.000000 0.000000 3.000000
max 999999.000000 40000.000000 5.000000 30.990000 1715.420000 378338.000000 5.000000 9.500000e+06 2.000000 13.000000 931.000000 50.000000 999.000000 28.000000 845.000000 850.000000 90.000000 61.00000 11.000000 1.743266e+06 366.600000 127.000000 1.000000 1.000000 61676.000000 1.0 32.000000 32.000000 51.000000 51.000000 63.000000 70.000000 99.000000 83.000000 112.000000 41.000000 90.000000 3.000000 3.000000 25.000000 28.000000

字段表

  1. id 为贷款清单分配的唯一信用证标识
  2. loanAmnt 贷款金额
  3. term 贷款期限(year)
  4. interestRate 贷款利率
  5. installment 分期付款金额
  6. grade 贷款等级
  7. subGrade 贷款等级之子级
  8. employmentTitle 就业职称
  9. employmentLength 就业年限(年)
  10. homeOwnership 借款人在登记时提供的房屋所有权状况
  11. annualIncome 年收入
  12. verificationStatus 验证状态
  13. issueDate 贷款发放的月份
  14. purpose 借款人在贷款申请时的贷款用途类别
  15. postCode 借款人在贷款申请中提供的邮政编码的前3位数字
  16. regionCode 地区编码
  17. dti 债务收入比
  18. delinquency_2years 借款人过去2年信用档案中逾期30天以上的违约事件数
  19. ficoRangeLow 借款人在贷款发放时的fico所属的下限范围
  20. ficoRangeHigh 借款人在贷款发放时的fico所属的上限范围
  21. openAcc 借款人信用档案中未结信用额度的数量
  22. pubRec 贬损公共记录的数量
  23. pubRecBankruptcies 公开记录清除的数量
  24. revolBal 信贷周转余额合计
  25. revolUtil 循环额度利用率,或借款人使用的相对于所有可用循环信贷的信贷金额
  26. totalAcc 借款人信用档案中当前的信用额度总数
  27. initialListStatus 贷款的初始列表状态
  28. applicationType 表明贷款是个人申请还是与两个共同借款人的联合申请
  29. earliesCreditLine 借款人最早报告的信用额度开立的月份
  30. title 借款人提供的贷款名称
  31. policyCode 公开可用的策略代码=1新产品不公开可用的策略代码=2
  32. n系列匿名特征 匿名特征n0-n14,为一些贷款人行为计数特征的处理

观察各个字段含义和实际数值

# train.head(20).iloc[:,:13]
train.head(20).iloc[:,13:26]
isDefault purpose postCode regionCode dti delinquency_2years ficoRangeLow ficoRangeHigh openAcc pubRec pubRecBankruptcies revolBal revolUtil
0 1 1 137.0 32 17.05 0.0 730.0 734.0 7.0 0.0 0.0 24178.0 48.9
1 0 0 156.0 18 27.83 0.0 700.0 704.0 13.0 0.0 0.0 15096.0 38.9
2 0 0 337.0 14 22.77 0.0 675.0 679.0 11.0 0.0 0.0 4606.0 51.8
3 0 4 148.0 11 17.21 0.0 685.0 689.0 9.0 0.0 0.0 9948.0 52.6
4 0 10 301.0 21 32.16 0.0 690.0 694.0 12.0 0.0 0.0 2942.0 32.0
5 0 9 512.0 21 17.14 0.0 730.0 734.0 19.0 0.0 0.0 4047.0 31.1
6 0 0 517.0 14 17.49 0.0 755.0 759.0 12.0 0.0 0.0 3111.0 8.5
7 0 0 100.0 4 32.60 0.0 665.0 669.0 8.0 1.0 1.0 14021.0 59.7
8 1 0 792.0 13 19.22 0.0 690.0 694.0 15.0 0.0 0.0 27176.0 46.0
9 0 0 59.0 11 24.39 0.0 725.0 729.0 7.0 0.0 0.0 2936.0 30.6
10 0 4 134.0 8 14.21 0.0 665.0 669.0 13.0 0.0 0.0 8653.0 47.5
11 0 0 893.0 49 34.63 0.0 710.0 714.0 10.0 0.0 0.0 16343.0 80.9
12 0 0 195.0 38 7.58 0.0 680.0 684.0 12.0 0.0 0.0 18866.0 35.7
13 0 2 134.0 8 5.68 0.0 690.0 694.0 7.0 0.0 0.0 4334.0 68.8
14 0 4 167.0 8 38.95 0.0 710.0 714.0 9.0 0.0 0.0 19023.0 60.8
15 0 2 194.0 38 17.27 0.0 660.0 664.0 16.0 1.0 1.0 220.0 3.6
16 0 2 492.0 36 21.02 0.0 705.0 709.0 16.0 0.0 0.0 36609.0 61.1
17 1 4 56.0 8 17.14 0.0 695.0 699.0 5.0 0.0 0.0 5463.0 76.9
18 1 3 140.0 8 28.95 3.0 660.0 664.0 6.0 0.0 0.0 6804.0 84.0
19 0 0 305.0 15 15.55 0.0 700.0 704.0 10.0 0.0 0.0 22859.0 57.0

查看缺失值

  • 可以看到employmentLength这一字段缺失情况严重
  • 其他非衍生字段缺失值,做一个缺值处理

统计多少字段有缺失值

# 统计多少字段有缺失值
print(f'There are {train.isnull().any().sum()} columns in train dataset with missing values.')
There are 22 columns in train dataset with missing values.

统计超过50%的缺失字段

# 统计是否有超过50%的缺失字段
have_null_fea_dict = (train.isnull().sum()/len(train)).to_dict()
fea_null_moreThanHalf = {
    }
for key,value in have_null_fea_dict.items():if value > 0.5:fea_null_moreThanHalf[key] = value
have_null_fea_dict
fea_null_moreThanHalf
{}

缺失值可视化

# 绘图查看缺失值
missingno.bar(train)
<matplotlib.axes._subplots.AxesSubplot at 0x1bd01f2d780>

在这里插入图片描述

缺失率可视化

# nan可视化
missing = train.isnull().sum()/len(train)
missing = missing[missing > 0]
missing.sort_values(inplace=True)
missing.plot.bar()
<matplotlib.axes._subplots.AxesSubplot at 0x1bd26416e48>

缺失率

显然employmentLength字段是非衍生特征里面缺失值非常明显的字段

  • 纵向了解哪些列存在 “nan”, 并可以把nan的个数打印,主要的目的在于查看某一列nan存在的个数是否真的很大,如果nan存在的过多,说明这一列对label的影响几乎不起作用了,可以考虑删掉。如果缺失值很小一般可以选择填充。
  • 另外可以横向比较,如果在数据集中,某些样本数据的大部分列都是缺失的且样本足够的情况下可以考虑删除。
train['employmentLength'].value_counts()
10+ years    262753
2 years       72358
< 1 year      64237
3 years       64152
1 year        52489
5 years       50102
4 years       47985
6 years       37254
8 years       36192
7 years       35407
9 years       30272
Name: employmentLength, dtype: int64

特征类型查看

  • 特征一般都是由类别型特征和数值型特征组成,而数值型特征又分为连续型和离散型。
    • 类别型特征有时具有非数值关系,有时也具有数值关系。比如‘grade’中的等级A,B,C等,是否只是单纯的分类,还是A优于其他要结合业务判断。
    • 数值型特征本是可以直接入模的,但往往风控人员要对其做分箱,转化为WOE编码进而做标准评分卡等操作。从模型效果上来看,特征分箱主要是为了降低变量的复杂性,减少变量噪音对模型的影响,提高自变量和因变量的相关度。从而使模型更加稳定。
numerical_fea = list(train.select_dtypes(exclude=['object']).columns)
category_fea = list(filter(lambda x: x not in numerical_fea,list(train.columns)))

类别型特征:category_fea

category_fea
['grade', 'subGrade', 'employmentLength', 'issueDate', 'earliesCreditLine']

连续型特征:numerical_fea

numerical_fea
['id','loanAmnt','term','interestRate','installment','employmentTitle','homeOwnership','annualIncome','verificationStatus','isDefault','purpose','postCode','regionCode','dti','delinquency_2years','ficoRangeLow','ficoRangeHigh','openAcc','pubRec','pubRecBankruptcies','revolBal','revolUtil','totalAcc','initialListStatus','applicationType','title','policyCode','n0','n1','n2','n3','n4','n5','n6','n7','n8','n9','n10','n11','n12','n13','n14']
Data Type
id ID Column
loanAmnt Numeric
term Categorical
interestRate Numeric
installment Numeric
grade Categorical
subGrade Categorical
employmentTitle Numeric
employmentLength Categorical
homeOwnership Categorical
annualIncome Numeric
verificationStatus Categorical
issueDate Date
isDefault Label
purpose Categorical
postCode Numeric
regionCode Numeric
dti Numeric
delinquency_2years Numeric
ficoRangeLow Numeric
ficoRangeHigh Numeric
openAcc Numeric
pubRec Numeric
pubRecBankruptcies Categorical
revolBal Numeric
revolUtil Numeric
totalAcc Numeric
initialListStatus Categorical
applicationType Categorical
earliesCreditLine Date
title Numeric
policyCode Numeric
n0 Numeric
n1 Numeric
n2 Numeric
n3 Numeric
n4 Numeric
n5 Numeric
n6 Numeric
n7 Numeric
n8 Numeric
n9 Numeric
n10 Numeric
n11 Categorical
n12 Categorical
n13 Numeric
n14 Numeric

分离数值型特征

数值型特征包含连续性和离散型

# 过滤数值型类别特征
def get_numerical_serial_fea(data,feas):numerical_serial_fea = []numerical_noserial_fea = []for fea in feas:temp = data[fea].nunique()if temp <= 10:numerical_noserial_fea.append(fea)continuenumerical_serial_fea.append(fea)return numerical_serial_fea,numerical_noserial_fea
numerical_serial_fea,numerical_noserial_fea = get_numerical_serial_fea(train,numerical_fea)
# 连续型
numerical_serial_fea
['id','loanAmnt','interestRate','installment','employmentTitle','annualIncome','purpose','postCode','regionCode','dti','delinquency_2years','ficoRangeLow','ficoRangeHigh','openAcc','pubRec','pubRecBankruptcies','revolBal','revolUtil','totalAcc','title','n0','n1','n2','n3','n4','n5','n6','n7','n8','n9','n10','n13','n14']
# 离散型
numerical_noserial_fea
['term','homeOwnership','verificationStatus','isDefault','initialListStatus','applicationType','policyCode','n11','n12']

数值连续型变量分析

#每个数字特征得分布可视化
f = pd.melt(train, value_vars=numerical_serial_fea)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")

在这里插入图片描述

  • 查看某一个数值型变量的分布,查看变量是否符合正态分布,如果不符合正太分布的变量可以log化后再观察下是否符合正态分布。
  • 如果想统一处理一批数据变标准化 必须把这些之前已经正态化的数据提出
  • 正态化的原因:一些情况下正态化非正态特征可以让模型更快的收敛,一些模型要求数据正态(eg. GMM、KNN),保证数据不要过偏态即可,过于偏态可能会影响模型预测结果。
#Ploting Transaction Amount Values Distribution
plt.figure(figsize=(16,12))
plt.suptitle('Transaction Values Distribution', fontsize=22)
plt.subplot(221)
sub_plot_1 = sns.distplot(train['loanAmnt'])
sub_plot_1.set_title("loanAmnt Distribuition", fontsize=18)
sub_plot_1.set_xlabel("")
sub_plot_1.set_ylabel("Probability", fontsize=15)plt.subplot(222)
sub_plot_2 = sns.distplot(np.log(train['loanAmnt']))
sub_plot_2.set_title("loanAmnt (Log) Distribuition", fontsize=18)
sub_plot_2.set_xlabel("")
sub_plot_2.set_ylabel("Probability", fontsize=15)
Text(0, 0.5, 'Probability')

在这里插入图片描述

总结

  • 数据理解和数据处理是数据挖掘极其重要的一环,我们需要了解数据集各个字段的特点并加以处理

三、评测标准

提交结果为每个测试样本是1的概率,也就是y为1的概率。评价方法为AUC评估模型效果(越大越好)。

分类常用使用的评估指标是:

  • Accuracy(精确度),AUC,Recall(召回率),Precision(准确度),F1,Kappa

本次是学习赛使用的评估指标是AUC

  • AUC也就是ROC曲线下与坐标轴围成的面积
  • ROC空间将假正例率(FPR)定义为 X 轴,真正例率(TPR)定义为 Y 轴。
    • TPR:在所有实际为正例的样本中,被正确地判断为正例之比率。
    • FPR:在所有实际为负例的样本中,被错误地判断为正例之比率。
  • AUC的取值范围子是0.5和1之间,面积越大,精准度越高,因此AUC越接近1.0,模型精准率预告,AUC为1时精准率为100%,

三、结果提交

提交前请确保预测结果的格式与sample_submit.csv中的格式一致,以及提交文件后缀名为csv。