【论文阅读】13-Multi-View Stereo for Community Photo Collections
- 0 basic information
- 1 background
- 2 method
- 2.0 Calibrating Internet Photos
- 2.1 Estimate depth maps
- 2.1.1 Find good matches ----重要!
- 2.1.1.1 image level---global view selection
- 2.1.1.2 !!Rescaling Views ---after global selection
- 2.1.1.3 pixel level ---local view selection A
- 2.1.2 optimizing for both depth and normal
- 2.1.2.1 image pixels priori queen Q --initial
- 2.1.2.2 visit each pixel in queen Q---pixel in R & A ,实现立体匹配
- 3 other
部分参考:链接
0 basic information
Goesele, Michael, Snaveley, Noah, Curless, Brian,等. Multi-View Stereo for Community Photo Collections[J]. Proc.int.conf.on Computer Vision, 2007:1-8.
1 background
CPCs(community photo collections)数据 特点:
2 method
2.0 Calibrating Internet Photos
- geometrically
radial distortion(径向畸变)
内参、外参 - radiometrically
2.1 Estimate depth maps
2.1.1 Find good matches ----重要!
2.1.1.1 image level—global view selection
- 目的:find a set of good neighborhood images N ----(usually |N| = 10)
- good :sufficient parallax(视差)
- good 影响因素:
- shared feature points number
- baseline length
- scale consistency
- 量化形式:
考虑 feature number & baseline( angle):
考虑 feature number & scale
- N 的生成方式:
greedy approach
grow the neighborhood incrementally by iteratively adding to N the
highest scoring view
2.1.1.2 !!Rescaling Views —after global selection
当对不同的reference view 进行深度估计时,neighbor views 根据计算进行与reference view 相对应的scale操作
原因:CPC图像集本身具有较大的尺度差异
-
Resolution_lowest — Vmin
相对尺度\分辨率计算公式如下:
实质: 平均-Shared feature points–average
-
R to Resolution_lowest—R_rescaled
- threshold t(min the relative scale)!!!
- rescale R!!!
-
N-Vmin to R_rescaled
-
NOTICE:
rescale with different reference view
2.1.1.3 pixel level —local view selection A
1.基于pixel
每个pixel 对应不同的A,并且neighboring image set = A在立体匹配迭代的过程中会不断更新
2.选择要求及定量化指标:
- corresponding pixels photometrically consistent --mean-removed normalized cross correlation
(NCC)
- sufficiently wide range of observation directions— span of directions from which a given scene point—
angular spread
angular spread:
the angle of epipolar lines obtained by projecting
each viewing ray passing through the scene point into the reference
view.(该像素的多个候选neighboring view的极线在reference view 上的投影相互之间形成的夹角 )
将其作为score_local的计算因子
ps
:极线—根据F计算
- 选择的步骤:
- Highest score LR(V)
- NCC higher threshold ----add to A
- Repeat stop: the size of A / N no remain
2.1.2 optimizing for both depth and normal
2.1.2.1 image pixels priori queen Q --initial
1.3D POINMTS :sfm sparse points
+
addition points: feature points visible in all N views2. project 3D POINTS to reference image R—pixels queen Q
2.1.2.2 visit each pixel in queen Q—pixel in R & A ,实现立体匹配
- traversal --prioritized–estimated matching confidence --selecting the highest one
- each selected pixel
- Pixel—window—planar patch in scene
- Planar patch 参数化表示—center pixel的深度h、邻域像素在s\t方向上的单位
深度偏移量hs、ht
—(ps:hs ht 可表示normal) - Planar patch —project to A—window’
- 基于Window& window’一致性约束—构建方程并优化目标函数求解未知量
- 约束:根据反射模型(选择简单的Lambertian reflectance),匹配位置处的像素值(RGB三通道)对应的感光强度(入射光线强度)相差一个color factor -ck(不同view、不同通道不同一个ck)
- 目标函数:SSD
- 方程个数: 3(RGB) * n * n(window size)*m(A size)
- 未知量:(center pixel -h \hs\ ht) 3+ 3*m (ck number)
- 计算depth 、normal的confidence:average of mean-remove NCC in neighboring view
- 迭代优化计算细节----见原文,此处略,
迭代过程中A更新
3 other
MVS benchmark datasets
MVS evaluation method