Task1:基于逻辑回归的分类预测
- 1 逻辑回归的基本原理
- 2 Demo实践
- 3 基于鸢尾花(iris)数据集的逻辑回归分类实践
1 逻辑回归的基本原理
逻辑回归(Logistic Regression)主要解决二分类问题,用来表示某件事情发生的可能性。逻辑回归是二分类任务中最常用的机器学习算法之一。它的设计思路简单,易于实现,可以用作性能基准,且在很多任务中都表现很好。
逻辑回归优点:
1)实现简单,广泛的应用于工业问题上;
2)分类时计算量非常小,速度很快,存储资源低;
3)便利的观测样本概率分数;
4)对逻辑回归而言,多重共线性并不是问题,它可以结合L2正则化来解决该问题;
5)计算代价不高,易于理解和实现;
逻辑回归缺点:
1)当特征空间很大时,逻辑回归的性能不是很好;
2)容易欠拟合,一般准确度不太高
3)不能很好地处理大量多类特征或变量;
4)只能处理两分类问题(在此基础上衍生出来的softmax可以用于多分类),且必须线性可分;
5)对于非线性特征,需要进行转换;
逻辑回归应用:
逻辑回归模型目前广泛用于各个领域,例如机器学习、大多数医学领域和社会科学。逻辑回归模型最初由Boyd 等人开发的创伤和损伤严重度评分(TRISS)被广泛用于预测受伤患者的死亡率,使用逻辑回归基于观察到的患者特征(年龄,性别,体重指数,各种血液检查的结果等)分析预测发生特定疾病(例如糖尿病,冠心病)的风险。逻辑回归模型也用于预测在给定的过程中,系统或产品的故障的可能性。还用于市场营销应用程序,例如预测客户购买产品或中止订购的倾向等。在经济学中它可以用来预测一个人选择进入劳动力市场的可能性,而商业应用则可以用来预测房主拖欠抵押贷款的可能性。条件随机字段是逻辑回归到顺序数据的扩展,用于自然语言处理。
逻辑回归模型现在同样是很多分类算法的基础组件,比如 分类任务中基于GBDT算法+LR逻辑回归实现的信用卡交易反欺诈,CTR(点击通过率)预估等,其好处在于输出值自然地落在0到1之间,并且有概率意义。模型清晰,有对应的概率学理论基础。它拟合出来的参数就代表了每一个特征(feature)对结果的影响。也是一个理解数据的好工具。但同时由于其本质上是一个线性的分类器,所以不能应对较为复杂的数据情况。很多时候我们也会拿逻辑回归模型去做一些任务尝试的基线(基础水平)。
在统计学中,逻辑模型是一种广泛使用的统计模型,在其基本形式中,使用逻辑函数来模拟二进制 因变量 ; 存在更复杂的扩展。在回归分析中,逻辑回归是估计逻辑模型的参数; 它是二项式回归的一种形式。
在数学上,二元逻辑模型具有一个具有两个可能值的因变量,例如通过/失败,赢/输,活/死或健康/生病; 这些由指示符变量表示,其中两个值标记为“0”和“1”。在逻辑模型中,对数比值(在对数的的可能性),用于标记为“1”的值是一个线性组合的一个或多个自变量(“预测”); 自变量可以是二进制变量(两个类,由指示符变量编码)或连续变量(任何实际值)。
逻辑回归函数是一种“Sigmoid”函数,呈现S型曲线,它将值转化为一个接近0或1的 值。 对数几率回归公式如下:
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(-5,5,0.01)
y = 1/(1+np.exp(-x))plt.plot(x,y)
plt.xlabel('z')
plt.ylabel('y')
plt.grid()
plt.show()
2 Demo实践
## 基础函数库
import numpy as np
## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns
## 导入逻辑回归模型函数
from sklearn.linear_model import LogisticRegression
## 构造数据集
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 0, 0, 1, 1, 1])
## 调用逻辑回归模型
lr_clf = LogisticRegression()
## 用逻辑回归模型拟合构造的数据集
lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2
## 查看其对应模型的w
print('the weight of Logistic Regression:',lr_clf.coef_)
## 查看其对应模型的w0
print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)
the weight of Logistic Regression: [[ 0.73462087 0.6947908 ]]
the intercept(w0) of Logistic Regression: [-0.03643213]
## 可视化构造的数据样本点
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')
plt.show()
# 可视化决策边界
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')
nx, ny = 200, 100
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))
z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])
z_proba = z_proba[:, 1].reshape(x_grid.shape)
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')
plt.show()
### 可视化预测新样本plt.figure()
## new point 1
x_fearures_new1 = np.array([[0, -1]])
plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))## new point 2
x_fearures_new2 = np.array([[1, 2]])
plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))## 训练样本
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')# 可视化决策边界
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')plt.show()
##在训练集和测试集上分布利用训练好的模型进行预测
y_label_new1_predict=lr_clf.predict(x_fearures_new1)
y_label_new2_predict=lr_clf.predict(x_fearures_new2)
print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)
##由于逻辑回归模型是概率预测模型(前文介绍的p = p(y=1|x,\theta)),所有我们可以利用predict_proba函数预测其概率
y_label_new1_predict_proba=lr_clf.predict_proba(x_fearures_new1)
y_label_new2_predict_proba=lr_clf.predict_proba(x_fearures_new2)
print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)
The New point 1 predict class:
[0]
The New point 2 predict class:
[1]
The New point 1 predict Probability of each class:
[[ 0.67507358 0.32492642]]
The New point 2 predict Probability of each class:
[[ 0.11029117 0.88970883]]
3 基于鸢尾花(iris)数据集的逻辑回归分类实践
## 基础函数库
import numpy as np
import pandas as pd## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns
##利用sklearn中自带的iris数据作为数据载入,以及利用Pandas转化为DataFrame格式
from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式##利用.info()查看数据的整体信息
iris_features.info()
''' <class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149 Data columns (total 4 columns): sepal length (cm) 150 non-null float64 sepal width (cm) 150 non-null float64 petal length (cm) 150 non-null float64 petal width (cm) 150 non-null float64 dtypes: float64(4) memory usage: 4.8 KB '''
##进行简单的数据查看,我们可以利用.head()头部.tail()尾部
iris_features.head()
<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 150 entries, 0 to 149
Data columns (total 4 columns):
sepal length (cm) 150 non-null float64
sepal width (cm) 150 non-null float64
petal length (cm) 150 non-null float64
petal width (cm) 150 non-null float64
dtypes: float64(4)
memory usage: 4.8 KB
iris_features.tail()
iris_target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
pd.Series(iris_target).value_counts()
2 50
1 50
0 50
dtype: int64
iris_features.describe()
## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target## 特征与标签组合的散点可视化
sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')
plt.show()
for col in iris_features.columns:sns.boxplot(x='target', y=col, saturation=0.5,
palette='pastel', data=iris_all)plt.title(col)plt.show()
# 选取其前三个特征绘制三维散点图
from mpl_toolkits.mplot3d import Axes3Dfig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')iris_all_class0 = iris_all[iris_all['target']==0].values
iris_all_class1 = iris_all[iris_all['target']==1].values
iris_all_class2 = iris_all[iris_all['target']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')
plt.legend()plt.show()
##为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split
##选择其类别为0和1的样本(不包括类别为2的样本)
iris_features_part=iris_features.iloc[:100]
iris_target_part=iris_target[:100]
##测试集大小为20%,80%/20%分
x_train,x_test,y_train,y_test=train_test_split(iris_features_part,iris_target_part,test_size=0.2,random_state=2020) ##从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression##定义逻辑回归模型
clf=LogisticRegression(random_state=0,solver='lbfgs')##在训练集上训练逻辑回归模型
clf.fit(x_train,y_train)##查看其对应的w
print('the weight of Logistic Regression:',clf.coef_)##查看其对应的w0
print('the intercept(w0) of Logistic Regression:',clf.intercept_)##在训练集和测试集上分布利用训练好的模型进行预测
train_predict=clf.predict(x_train)
test_predict=clf.predict(x_test) from sklearn import metrics
##利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))##查看混淆矩阵(预测值和真实值的各类情况统计矩阵)
confusion_matrix_result=metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)##利用热力图对于结果进行可视化
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix_result,annot=True,cmap='Blues')
plt.xlabel('Predictedlabels')
plt.ylabel('Truelabels')
plt.show()
the weight of Logistic Regression: [[ 0.45244919 -0.81010583 2.14700385 0.90450733]]
the intercept(w0) of Logistic Regression: [-6.57504448]
The accuracy of the Logistic Regression is: 1.0
The accuracy of the Logistic Regression is: 1.0
The confusion matrix result:
[[ 9 0]
[ 0 11]]
##测试集大小为20%,80%/20%分
x_train,x_test,y_train,y_test=train_test_split(iris_features,iris_target,test_size=0.2,random_state=2020)##定义逻辑回归模型
clf=LogisticRegression(random_state=0,solver='lbfgs')##在训练集上训练逻辑回归模型
clf.fit(x_train,y_train)##查看其对应的w
print('the weight of Logistic Regression:\n',clf.coef_)
##查看其对应的w0
print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)
##由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类##在训练集和测试集上分布利用训练好的模型进行预测
train_predict=clf.predict(x_train)
test_predict=clf.predict(x_test)
##由于逻辑回归模型是概率预测模型(前文介绍的p=p(y=1|x,\theta)),所有我们可以利用predict_proba函数预测其概率train_predict_proba=clf.predict_proba(x_train)
test_predict_proba=clf.predict_proba(x_test)print('The test predict Probability of each class:\n',test_predict_proba)
##其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。##利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))##查看混淆矩阵
confusion_matrix_result=metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)##利用热力图对于结果进行可视化
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix_result,annot=True,cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()
the weight of Logistic Regression:
[[-0.43538857 0.87888013 -2.19176678 -0.94642091]
[-0.39434234 -2.6460985 0.76204684 -1.35386989]
[-0.00806312 0.11304846 2.52974343 2.3509289 ]]
the intercept(w0) of Logistic Regression:
[ 6.30620875 8.25761672 -16.63629247]
The test predict Probability of each class:
[[ 1.32525870e-04 2.41745142e-01 7.58122332e-01]
[ 7.02970475e-01 2.97026349e-01 3.17667822e-06]
[ 3.37367886e-02 7.25313901e-01 2.40949311e-01]
[ 5.66207138e-03 6.53245545e-01 3.41092383e-01]
[ 1.06817066e-02 6.72928600e-01 3.16389693e-01]
[ 8.98402870e-04 6.64470713e-01 3.34630884e-01]
[ 4.06382037e-04 3.86192249e-01 6.13401369e-01]
[ 1.26979439e-01 8.69440588e-01 3.57997319e-03]
[ 8.75544317e-01 1.24437252e-01 1.84312617e-05]
[ 9.11209514e-01 8.87814689e-02 9.01671605e-06]
[ 3.86067682e-04 3.06912689e-01 6.92701243e-01]
[ 6.23261939e-03 7.19220636e-01 2.74546745e-01]
[ 8.90760124e-01 1.09235653e-01 4.22292409e-06]
[ 2.32339490e-03 4.47236837e-01 5.50439768e-01]
[ 8.59945211e-04 4.22804376e-01 5.76335679e-01]
[ 9.24814068e-01 7.51814638e-02 4.46852786e-06]
[ 2.01307999e-02 9.35166320e-01 4.47028801e-02]
[ 1.71215635e-02 5.07246971e-01 4.75631465e-01]
[ 1.83964097e-04 3.17849048e-01 6.81966988e-01]
[ 5.69461042e-01 4.30536566e-01 2.39269631e-06]
[ 8.26025475e-01 1.73971556e-01 2.96936737e-06]
[ 3.05327704e-04 5.15880492e-01 4.83814180e-01]
[ 4.69978972e-03 2.90561777e-01 7.04738434e-01]
[ 8.61077168e-01 1.38915993e-01 6.83858427e-06]
[ 6.99887637e-04 2.48614010e-01 7.50686102e-01]
[ 5.33421842e-02 8.31557126e-01 1.15100690e-01]
[ 2.34973018e-02 3.54915328e-01 6.21587370e-01]
[ 1.63311193e-03 3.48301765e-01 6.50065123e-01]
[ 7.72156866e-01 2.27838662e-01 4.47157219e-06]
[ 9.30816593e-01 6.91640361e-02 1.93708074e-05]]
The accuracy of the Logistic Regression is: 0.958333333333
The accuracy of the Logistic Regression is: 0.8
The confusion matrix result:
[[10 0 0]
[ 0 7 3]
[ 0 3 7]]