文章目录
- 1. TensorBoard 安装
- 2. TensorBoard 使用
- 2.1 SummaryWriter()
- 2.2 add_scalar()
- 2.3 add_histogram()
- 2.4 add_image()
- 2.5 add_graph()
- 2.6 add_video()
- 2.7 make_grid()
- 2.8 torchsummary
- 3. 权重和特征图可视化
1. TensorBoard 安装
TensorBoard:TensorFlow 中强大的可视化工具,它可以用来展示网络图、张量的指标变化、张量的分布情况等。在训练网络时,可以设置不同的参数(比如:权重W、偏置B、卷积层数、全连接层数等),使用TensorBoader可以很直观的辅助选择参数。
激活虚拟环境,直接命令行安装即可:
pip install tensorboard
测试:
import numpy as np
from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter(comment='test_tensorboard')for x in range(100):writer.add_scalar('y=2x', x * 2, x)writer.add_scalar('y=pow(2, x)', 2 ** x, x)writer.add_scalars('data/scalar_group', {"xsinx": x * np.sin(x),"xcosx": x * np.cos(x),"arctanx": np.arctan(x)}, x)
writer.close()
启动:
tensorboard --logdir=./runs
查看:
注意:事件文件与代码是同级目录。
2. TensorBoard 使用
2.1 SummaryWriter()
SummaryWriter 官方文档:LINK。
torch.utils.tensorboard.writer.SummaryWriter(log_dir=None, comment='', purge_step=None, max_queue=10, flush_secs=120, filename_suffix='')
功能:提供创建 event file 的高级接口。
主要属性:
log_dir
:event file 输出文件夹;comment
:不指定log_dir
时,文件夹后缀名;filename_suffix
:event file 文件名后缀名。
实例:
log_dir = "./train_log/test_log_dir"
writer = SummaryWriter(log_dir=log_dir, comment='_scalars', filename_suffix="123456")
writer = SummaryWriter(comment='_scalars', filename_suffix="123456")
2.2 add_scalar()
add_scalar(tag, scalar_value, global_step=None, walltime=None)
功能:记录标量。
tag
:图像的标签名,图的唯一标识;scalar_value
:要记录的标量;global_step
:x 轴。
add_scalars(main_tag, tag_scalar_dict, global_step=None, walltime=None)
main_tag
:该图的标签;tag_scalar_dict
: key 是变量的 tag,value 是变量的值。
from torch.utils.tensorboard import SummaryWritermax_epoch = 100
writer = SummaryWriter(comment='test_comment', filename_suffix="test_suffix")for x in range(max_epoch):writer.add_scalar('y=2x', x * 2, x)writer.add_scalar('y=pow_2_x', 2 ** x, x)writer.add_scalars('data/scalar_group', {"xsinx": x * np.sin(x),"xcosx": x * np.cos(x)}, x)writer.close()
2.3 add_histogram()
add_histogram(tag, values, global_step=None, bins='tensorflow', walltime=None, max_bins=None)
writer = SummaryWriter(comment='test_comment', filename_suffix="test_suffix")for x in range(2):np.random.seed(x)data_union = np.arange(100)data_normal = np.random.normal(size=1000)writer.add_histogram('distribution union', data_union, x)writer.add_histogram('distribution normal', data_normal, x)plt.subplot(121).hist(data_union, label="union")plt.subplot(122).hist(data_normal, label="normal")plt.legend()plt.show()writer.close()
2.4 add_image()
add_image(tag, img_tensor, global_step=None, walltime=None, dataformats='CHW')
功能:记录图像。
- tag:图像的标签名,图的唯一标识;
- img_tensor:图像数据,注意尺度;
- global_step: x 轴;
- dataformats:数据形式 CHW、HWC、HW。
add_images(tag, img_tensor, global_step=None, walltime=None, dataformats='NCHW')
2.5 add_graph()
add_graph(model, input_to_model=None, verbose=False)
功能:可视化模型计算图。
参数说明:
- model :模型,必须是 nn.Module
- input_to_model :输出给模型的数据
- verbose :是否打印计算图结构信息
2.6 add_video()
add_video(tag, vid_tensor, global_step=None, fps=4, walltime=None)
2.7 make_grid()
torchvision.utils.make_grid(tensor: Union[torch.Tensor, List[torch.Tensor]], nrow: int = 8, padding: int = 2, normalize: bool = False,range: Optional[Tuple[int, int]] = None, scale_each: bool = False, pad_value: int = 0)
功能:制作网格图像。
参数说明:
- tensor:图像数据, BCH*W 形式;
- nrow:行数(列数自动计算);
-padding:图像间距(像素单位); - normalize:是否将像素值标准化;
- range:标准化范围;
-scale_each:是否单张图维度标准化; - pad_value:padding的像素值。
实例:
import os
import torch
import time
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoaderimport sys
hello_pytorch_DIR = os.path.abspath(os.path.dirname(__file__)+os.path.sep+".."+os.path.sep+"..")
sys.path.append(hello_pytorch_DIR)
from tools.my_dataset import RMBDataset
from tools.common_tools import set_seed
from model.lenet import LeNetset_seed(1) # 设置随机种子writer = SummaryWriter(comment='test_your_comment', filename_suffix="_test_your_filename_suffix")split_dir = os.path.join("D:\Project\Pytorch Project\data\CatAndDog", "CatAndDogSplit")
train_dir = os.path.join(split_dir, "train")
# train_dir = "path to your training data"transform_compose = transforms.Compose([transforms.Resize((32, 64)), transforms.ToTensor()])
train_data = RMBDataset(data_dir=train_dir, transform=transform_compose)
train_loader = DataLoader(dataset=train_data, batch_size=16, shuffle=True)
data_batch, label_batch = next(iter(train_loader))img_grid = vutils.make_grid(data_batch, nrow=4, normalize=True, scale_each=True)
# img_grid = vutils.make_grid(data_batch, nrow=4, normalize=False, scale_each=False)
writer.add_image("input img", img_grid, 0)writer.close()
2.8 torchsummary
torchsummary,仓库地址:LINK。
功能:查看模型信息,便于调试。
参数说明:
- model: pytorch 模型;
- input_size :模型输入 size;
- batch_size: batch size;
- device: cuda or cpu。
3. 权重和特征图可视化
writer = SummaryWriter(comment='test_your_comment', filename_suffix="_test_your_filename_suffix")alexnet = models.alexnet(pretrained=True)kernel_num = -1
vis_max = 1for sub_module in alexnet.modules():if isinstance(sub_module, nn.Conv2d):kernel_num += 1if kernel_num > vis_max:breakkernels = sub_module.weightc_out, c_int, k_w, k_h = tuple(kernels.shape)for o_idx in range(c_out):kernel_idx = kernels[o_idx, :, :, :].unsqueeze(1) # make_grid 需要 BCHW,这里拓展C维度kernel_grid = vutils.make_grid(kernel_idx, normalize=True, scale_each=True, nrow=c_int)writer.add_image('{}_Convlayer_split_in_channel'.format(kernel_num), kernel_grid, global_step=o_idx)kernel_all = kernels.view(-1, 3, k_h, k_w) # 3, h, wkernel_grid = vutils.make_grid(kernel_all, normalize=True, scale_each=True, nrow=8) # c, h, wwriter.add_image('{}_all'.format(kernel_num), kernel_grid, global_step=322)print("{}_convlayer shape:{}".format(kernel_num, tuple(kernels.shape)))writer.close()
writer = SummaryWriter(comment='test_your_comment', filename_suffix="_test_your_filename_suffix")# 数据
path_img = "./lena.png" # your path to image
normMean = [0.49139968, 0.48215827, 0.44653124]
normStd = [0.24703233, 0.24348505, 0.26158768]norm_transform = transforms.Normalize(normMean, normStd)
img_transforms = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),norm_transform
])img_pil = Image.open(path_img).convert('RGB')
if img_transforms is not None:img_tensor = img_transforms(img_pil)
img_tensor.unsqueeze_(0) # chw --> bchw# 模型
alexnet = models.alexnet(pretrained=True)# forward
convlayer1 = alexnet.features[0]
fmap_1 = convlayer1(img_tensor)# 预处理
fmap_1.transpose_(0, 1) # bchw=(1, 64, 55, 55) --> (64, 1, 55, 55)
fmap_1_grid = vutils.make_grid(fmap_1, normalize=True, scale_each=True, nrow=8)writer.add_image('feature map in conv1', fmap_1_grid, global_step=322)
writer.close()