当前位置: 代码迷 >> 综合 >> backbone、head、neck优化记录
  详细解决方案

backbone、head、neck优化记录

热度:58   发布时间:2024-02-09 05:16:12.0

一、数据增强方式
random erase
CutOut
MixUp
CutMix
色彩、对比度增强
旋转、裁剪
在这里插入图片描述
解决数据不均衡:

Focal loss
hard negative example mining
OHEM
S-OHEM
GHM(较大关注easy和正常hard样本,较少关注outliners)
PISA
在这里插入图片描述
二、常用backbone
VGG
ResNet(ResNet18,50,100)
ResNeXt
DenseNet
SqueezeNet
Darknet(Darknet19,53)
MobileNet
ShuffleNet
DetNet
DetNAS
SpineNet
EfficientNet(EfficientNet-B0/B7)
CSPResNeXt50
CSPDarknet53
在这里插入图片描述
三、常用Head

Dense Prediction (one-stage):
RPN
SSD
YOLO
RetinaNet(anchor based)
CornerNet CenterNet
MatrixNet
FCOS(anchor free)
Sparse Prediction (two-stage):

Faster R-CNN
R-FCN
Mask RCNN (anchor based)
RepPoints(anchor free)

四、常用neck
Additional blocks:

SPP
ASPP
RFB
SAM
Path-aggregation blocks:
FPN
PAN
NAS-FPN
Fully-connected
FPN
BiFPN
ASFF
SFAM
NAS-FPN
在这里插入图片描述
五、Skip-connections

Residual connections
Weighted residual connections
Multi-input weighted residual connections
Cross stage partial connections (CSP)

六、常用激活函数和loss

激活函数:

ReLU 
LReLU 
PReLU
ReLU6
Scaled Exponential Linear Unit (SELU)
Swishhard-Swish
Mish

loss:
MSE
Smooth L1
Balanced L1
KL Loss
GHM loss
IoU Loss
Bounded IoU Loss
GIoU Loss
CIoU Loss
DIoU Loss

七、正则化和BN方式
正则化:

DropOut
DropPath
Spatial Drop
OutDropBlock

BN:

Batch Normalization (BN) 
Cross-GPU Batch Normalization (CGBN or SyncBN)
Filter Response Normalization (FRN)
Cross-Iteration Batch Normalization (CBN)

在这里插入图片描述
八、训练技巧

Label Smoothing
Warm Up
  相关解决方案