一、数据增强方式
random erase
CutOut
MixUp
CutMix
色彩、对比度增强
旋转、裁剪
解决数据不均衡:
Focal loss
hard negative example mining
OHEM
S-OHEM
GHM(较大关注easy和正常hard样本,较少关注outliners)
PISA
二、常用backbone
VGG
ResNet(ResNet18,50,100)
ResNeXt
DenseNet
SqueezeNet
Darknet(Darknet19,53)
MobileNet
ShuffleNet
DetNet
DetNAS
SpineNet
EfficientNet(EfficientNet-B0/B7)
CSPResNeXt50
CSPDarknet53
三、常用Head
Dense Prediction (one-stage):
RPN
SSD
YOLO
RetinaNet(anchor based)
CornerNet CenterNet
MatrixNet
FCOS(anchor free)
Sparse Prediction (two-stage):
Faster R-CNN
R-FCN
Mask RCNN (anchor based)
RepPoints(anchor free)
四、常用neck
Additional blocks:
SPP
ASPP
RFB
SAM
Path-aggregation blocks:
FPN
PAN
NAS-FPN
Fully-connected
FPN
BiFPN
ASFF
SFAM
NAS-FPN
五、Skip-connections
Residual connections
Weighted residual connections
Multi-input weighted residual connections
Cross stage partial connections (CSP)
六、常用激活函数和loss
激活函数:
ReLU
LReLU
PReLU
ReLU6
Scaled Exponential Linear Unit (SELU)
Swishhard-Swish
Mish
loss:
MSE
Smooth L1
Balanced L1
KL Loss
GHM loss
IoU Loss
Bounded IoU Loss
GIoU Loss
CIoU Loss
DIoU Loss
七、正则化和BN方式
正则化:
DropOut
DropPath
Spatial Drop
OutDropBlock
BN:
Batch Normalization (BN)
Cross-GPU Batch Normalization (CGBN or SyncBN)
Filter Response Normalization (FRN)
Cross-Iteration Batch Normalization (CBN)
八、训练技巧
Label Smoothing
Warm Up