当前位置: 代码迷 >> 综合 >> leetcode:1143.最长公共子序列(动态规划)
  详细解决方案

leetcode:1143.最长公共子序列(动态规划)

热度:9   发布时间:2024-02-08 10:34:32.0

链接:https://leetcode-cn.com/problems/longest-common-subsequence/
比较经典的DP问题。创建二维数组 d p dp d p [ i ] [ j ] dp[i][j] 表示 t e x t ( 0 , i ) text(0,i) t e x t 2 ( 0 , j ) text2(0,j) 的最长公共子序列。
转移方程为:
1. 当 t e x t 1 [ i ] = = t e x t 2 [ j ] text1[i] == text2[j] 时, d p [ i + 1 ] [ j + 1 ] = d p [ i ] [ j ] + 1 dp[i+1][j+1] = dp[i][j]+1
2. 当 t e x t 1 [ i ] ! = t e x t 2 [ j ] text1[i] != text2[j] 时, d p [ i + 1 ] [ j + 1 ] = m a x ( d p [ i ] [ j + 1 ] , d p [ i + 1 ] [ j ] ) dp[i+1][j+1] = max(dp[i][j+1],dp[i+1][j])
java代码:

class Solution {public int longestCommonSubsequence(String text1, String text2) {int len1 = text1.length();int len2 = text2.length();int dp[][] = new int [len1+1][len2+1];for(int i = 0;i<len1;i++){for(int j = 0;j<len2;j++){if(text1.charAt(i) == text2.charAt(j))dp[i+1][j+1] = dp[i][j]+1;else dp[i+1][j+1] = Math.max(dp[i][j+1],dp[i+1][j]);}}return dp[len1][len2];}
}