文章目录
- 一、算法介绍
- 二、适用问题
- 三、算法总结
- 四、应用场景举例
- 五、SPSS操作
- 六、实际案例
- 七、论文案例片段(待完善)
聚类分析主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五
视频回顾
一、算法介绍
?聚类分析是统计学中研究这种“物以类聚”问题的一种有效方法,它属于统计分析的范畴。聚类分析的实质是建立一种分类方法,它能够将一批样本数据按照他们在性质上的亲密程度在没有先验知识的情况下自动进行分类。这里所说的类就是一个具有相似性的个体的集合,不同类之间具有明显的区别。
聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。因此我们说聚类分析是一种探索性的分析方法。
二、适用问题
三、算法总结
四、应用场景举例
五、SPSS操作
- 树状图
- 冰柱图
六、实际案例