当前位置: 代码迷 >> 综合 >> 大三小学期进阶课程第二十课:Understand More on the MP Difficulty
  详细解决方案

大三小学期进阶课程第二十课:Understand More on the MP Difficulty

热度:64   发布时间:2024-02-01 12:24:35.0

第20课、Understand More on the MP Difficulty

  1. EM是一个在已知部分相关变量的情况下,估计未知变量的迭代技术,EM的算法流程如下:
    (1)初始化分布参数;
    (2)重复直到收敛。

  2. 重复直到收敛的步骤如下:
    (1)E步骤:根据隐含数据的假设值,给出当前的参数的极大似然估计;
    (2)M步骤:重新给出未知变量的期望估计,应用于缺失值。

  3. 约束问题的核心有三点:第一是目标函数的定义,目标函数比较清晰,对于后面的求解更有帮助。第二是约束,比如路网约束、交规、动态约束等。第三是约束问题的优化,比如动态规划、二次规划等。

  4. 在无人车场景中,有三类约束,第一个叫做 Rraffic Regulation,第二个是 Decisions,第三个是 Best Trajectory 。这些限制又分为硬限制和软限制,例如交通规则属于硬性限制。

  5. 在蓝线和红线交点处发现前方有车辆行驶缓慢,可能要进行换道处理。如果只是简单的看到旁边没有车就换道,可能会导致危险发生。在 Apollo EM 规划框架中,我们会对换道和继续在本车道行驶分别规划出一条轨迹,只有换道之后的 Trajectory 要比本车道的 Trajectory 好的情况下才换道。在 Apollo 的 EM planner中,决定哪个道比较好的模块叫做 Reference Line Decider,中间的并行模块是通过 Path Speed Iterative 的方式并行实现的。
    在这里插入图片描述

  6. 优化决策问题本身是一个 3D optimization 问题,其中包含了三个维度,需要生成 SLT 。三维空间的优化相对比较复杂,常用的方法有两种:
    (1)离散化的方式去处理。
    (2) Expectation Maximization(期望最大化)。其基本思想是降维处理,先在一个维度上进行优化,然后在优化的基础上再对其它维度进行优化,并持续迭代以获得局部最优解。

  7. 对于无人车,Apollo 上的 EM planner 对 Path-Speed 进行迭代优化。首先,生成一条 Optimal Path ,在最优路径的基础上生成 Optimal Speed Profile 。在下一个迭代周期,在优化后的 Speed 的基础上,进一步优化 Path,依次类推。它分了四步走,其中分为两步 E step 和 M step 。这种算法的缺点是不一定能收敛到全局最优解。

  8. 优化问题的关键步骤包括: Objective Functional、Constraint、Solver。目标函数是一些关键特征的线性组合。约束主要包括交通灯、碰撞以及动态需求等。优化求解方法的目的是找到最佳路径,包括前面讲的动态规划+二次规划的启发式方法。

  9. 对于非线性优化问题,通常都是分两步走,一是动态规划,先找一个粗略解。然后再是二次规划,从粗略解出发,找出一个最优解。

  10. 以路径规划为例,假设前方有一个障碍物,首先做出从左边还是右边的避让决策,然后通过 QP 生成一条平滑的曲线去避让障碍物。对于速度而言,先通过动态规划的方式给出一个粗略的解,然后再通过二次规划的方式给出一个更平滑的解。

  11. 对于逆行的处理,首先根据当前 Speed Profile 去估计当前逆行障碍物的位置,然后再修正 Path,根据修正之后的 Path 再来处理 Speed,例如需要减速。减速之后,估计需要重新改变路径,依此类推,直到得到理想的规划轨迹。

  12. 决策问题通常用 POMDP 加上一些机器学习的技术来解决。

  13. 解决好规划问题,需要把两个方面做好,一个是数据闭环(Data Driven),另一个是基于规则的方法。

  14. 数据驱动是在基于规则的闭环里面的小闭环。Rule Based 的方法可以对遇到的新案例,很快给出解决方案。

  15. 在基于规则的方法的基础上,对问题形成一定的认识,通过把问题抽象成更加通用的问题,定义目标函数来进一步优化问题。

  16. 数据驱动的方法就是通过大量的案例统计分析,得到模型,使得遇到类似问题的时候,不需要过多的考虑,直接套用数据驱动的模型获得结果

  17. Data Driven 的方法其实就是基于经验的方法,只不过这些经验是模型通过大量的样本数据学习得到的