当前位置: 代码迷 >> 综合 >> C++软件开发----高频面试笔试题目
  详细解决方案

C++软件开发----高频面试笔试题目

热度:98   发布时间:2024-02-01 01:16:36.0

文章目录

  • C++基础
    • 常量
    • 数据类型
    • 冒泡排序
    • 指针
    • 结构体
  • c++核心
    • 内存分区模型
      • 程序运行前
      • 程序运行后
    • 引用
    • 指针和引用的区别
    • 函数的默认参数
    • 函数重载
    • 重载和重写的区别
    • 类和对象
      • 封装
      • struct和class的区别
      • 构造函数和析构函数
      • 拷贝构造
      • 深拷贝和浅拷贝
      • 静态成员
    • C++对象模型和this指针
      • 成员变量和成员函数分开存储
      • this指针
      • const修饰成员函数
      • 友元
    • 继承
      • 继承中构造和析构顺序
      • 继续中同名函数处理
      • 多继承
    • 多态
      • 多态的基本概念
      • 纯虚函数和抽象类
      • 虚析构和纯虚函数析构
    • 文件操作
      • 写文件
      • 读文件

C++基础

常量

C++定义常量两种方式

  1. #define宏定义:

define 常量名 常量值

  1. const修饰的变量

const 数据类型 常量名=常量值

数据类型

  1. 字符串型

    c风格字符型 : char 变量名[]=“字符串值”

    C++ 风格字符串 : string 变量名=“字符串值”

冒泡排序

最常用的排序算法,对数组内元素进行排序。

  1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
  2. 对每一对相邻元素做同样的工作,执行完毕后,找到第一个最大值。
  3. 重复以上的步骤,每次比较次数-1,直到不需要比较

示例: 将数组 { 4,2,8,0,5,7,1,3,9 } 进行升序排序

//冒泡排序函数
void bubbleSort(int * arr, int len)  //int * arr 也可以写为int arr[]
{for (int i = 0; i < len - 1; i++){for (int j = 0; j < len - 1 - i; j++){if (arr[j] > arr[j + 1]){int temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}
}//打印数组函数
void printArray(int arr[], int len)
{for (int i = 0; i < len; i++){cout << arr[i] << endl;}
}int main() {int arr[10] = { 4,3,6,9,1,2,10,8,7,5 };int len = sizeof(arr) / sizeof(int);bubbleSort(arr, len);printArray(arr, len);system("pause");return 0;
}

指针

1.指针变量和普通变量的区别

  • 普通变量存放的是数据,指针变量存放的是地址
  • 指针变量可以通过" * "操作符,操作指针变量指向的内存空间,这个过程称为解引用

2.空指针和野指针

  • 空指针:指针变量指向内存中编号为0的空间

  • **用途:**初始化指针变量

  • **注意:**空指针指向的内存是不可以访问的

  • **示例:**空指针

int main() {//指针变量p指向内存地址编号为0的空间int * p = NULL;//访问空指针报错 //内存编号0 ~255为系统占用内存,不允许用户访问cout << *p << endl;system("pause");return 0;
}
  • 野指针:指针变量指向非法的内存空间

  • 示例2:野指针

int main() {//指针变量p指向内存地址编号为0x1100的空间int * p = (int *)0x1100;//访问野指针报错 cout << *p << endl;system("pause");return 0;
}
  • 总结:空指针和野指针都不是我们申请的空间,因此不要访问。

3.智能指针

智能指针就是一个类,当超出类的作用域时,类会自动调用析构函数,自动释放资源。

智能指针主要管理在一个指针,因为申请的空间在函数结束时忘记释放了造成内存泄露。使用智能指针可以避免这个问题。

4.const修饰指针

const修饰指针有三种情况

  1. const修饰指针 — 常量指针
  2. const修饰常量 — 指针常量
  3. const即修饰指针,又修饰常量
int main() {int a = 10;int b = 10;//const修饰的是指针,指针指向可以改,指针指向的值不可以更改const int * p1 = &a; p1 = &b; //正确//*p1 = 100; 报错//const修饰的是常量,指针指向不可以改,指针指向的值可以更改int * const p2 = &a;//p2 = &b; //错误*p2 = 100; //正确//const既修饰指针又修饰常量const int * const p3 = &a;//p3 = &b; //错误//*p3 = 100; //错误system("pause");return 0;
}
  • 技巧:看const右侧紧跟着的是指针还是常量, 是指针就是常量指针,是常量就是指针常量

结构体

结构体属于用户自定义的数据类型,允许用户存储不同的数据类型

c++核心

内存分区模型

1.C++程序在执行时,将内存大方向划分为4个区域

  • 代码区:存放函数体的二进制代码,由操作系统进行管理的
  • 全局区:存放全局变量和静态变量以及常量
  • 栈区:由编译器自动分配释放, 存放函数的参数值,局部变量等
  • 堆区:由程序员分配和释放,若程序员不释放,程序结束时由操作系统回收

2.内存分区的意义

不同区域存放的数据,赋予不同的生命周期, 给我们更大的灵活编程

程序运行前

在程序编译后,生成了exe可执行程序,未执行该程序前分为两个区域

? 代码区:

? 存放 CPU 执行的机器指令

? 代码区是共享的,共享的目的是对于频繁被执行的程序,只需要在内存中有一份代码即可

? 代码区是只读的,使其只读的原因是防止程序意外地修改了它的指令

? 全局区:

? 全局变量和静态变量存放在此.

? 全局区还包含了常量区, 字符串常量和其他常量也存放在此.

? 该区域的数据在程序结束后由操作系统释放.

程序运行后

? 栈区:

? 由编译器自动分配释放, 存放函数的参数值,局部变量等

? 注意事项:不要返回局部变量的地址,栈区开辟的数据由编译器自动释放

? 堆区:

? 由程序员分配释放,若程序员不释放,程序结束时由操作系统回收

? 在C++中主要利用new在堆区开辟内存

引用

引用的本质:给数据类型起别名

数据类型 &别名=原名

  • 引用必须初始化
  • 引用在初始化后,不可以改变

本质:引用的本质在c++内部实现是一个指针常量.

//发现是引用,转换为 int* const ref = &a;
void func(int& ref){ref = 100; // ref是引用,转换为*ref = 100
}
int main(){int a = 10;//自动转换为 int* const ref = &a; 指针常量是指针指向不可改,也说明为什么引用不可更改int& ref = a; ref = 20; //内部发现ref是引用,自动帮我们转换为: *ref = 20;cout << "a:" << a << endl;cout << "ref:" << ref << endl;func(a);return 0;
}

指针和引用的区别

**指针:**是一个变量类型;指针可以不进行初始化;指针初始化后可以改变,在写代码时需要大量的检测
**引用:**是一个别名;引用必须要初始化;引用初始化后不可改变,无需检测

函数的默认参数

在C++中,函数的形参列表中的形参是可以有默认值的。

语法:返回值类型 函数名 (参数= 默认值){}

int func(int a, int b = 10, int c = 10) {return a + b + c;
}
//1. 如果某个位置参数有默认值,那么从这个位置往后,从左向右,必须都要有默认值
//2. 如果函数声明有默认值,函数实现的时候就不能有默认参数

函数重载

**作用:**函数名可以相同,提高复用性

函数重载满足条件:

  • 同一个作用域下
  • 函数名称相同
  • 函数参数类型不同 或者 个数不同 或者 顺序不同

注意: 函数的返回值不可以作为函数重载的条件

重载和重写的区别

**重载:**是指函数名相同,而这些函数的参数表不同。

**重写:**是指子类重新定义父类虚函数的方法。和多态相关。

类和对象

C++面向对象的三大特性为:封装、继承、多态

C++认为==万事万物都皆为对象,对象上有其属性和行为

封装

封装的意义:

  • 将属性和行为作为一个整体,表现生活中的事物
  • 将属性和行为加以权限控制

封装意义一:

? 在设计类的时候,属性和行为写在一起,表现事物

封装意义二:

类在设计时,可以把属性和行为放在不同的权限下,加以控制

访问权限有三种:

  1. public 公共权限
  2. protected 保护权限
  3. private 私有权限

struct和class的区别

在C++中 struct和class唯一的区别就在于 默认的访问权限不同

区别:

  • struct 默认权限为公共
  • class 默认权限为私有

构造函数和析构函数

对象的初始化和清理也是两个非常重要的安全问题

? 一个对象或者变量没有初始状态,对其使用后果是未知

? 同样的使用完一个对象或变量,没有及时清理,也会造成一定的安全问题

c++利用了构造函数析构函数解决上述问题,这两个函数将会被编译器自动调用,完成对象初始化和清理工作。

对象的初始化和清理工作是编译器强制要我们做的事情,因此如果我们不提供构造和析构,编译器会提供

编译器提供的构造函数和析构函数是空实现。

  • 构造函数:主要作用在于创建对象时为对象的成员属性赋值,构造函数由编译器自动调用,无须手动调用。

  • 析构函数:主要作用在于对象销毁前系统自动调用,执行一些清理工作。

拷贝构造

C++中拷贝构造函数调用时机通常有三种情况

  • 使用一个已经创建完毕的对象来初始化一个新对象
  • 值传递的方式给函数参数传值
  • 以值方式返回局部对象

深拷贝和浅拷贝

**浅拷贝:***简单的赋值拷贝操作

没有给新的指针申请内存来存内容,新的对象里面的指针和传进的指针都是指向同一块内存

**深拷贝:**在堆区重新申请空间,进行拷贝操作

给新的指针申请内存来存内存,这样就不会出现浅拷贝所出现的问题了

静态成员

静态成员就是在成员变量和成员函数前加上关键字static,称为静态成员

静态成员分为:

  • 静态成员变量
    • 所有对象共享同一份数据
    • 在编译阶段分配内存
    • 类内声明,类外初始化
  • 静态成员函数
    • 所有对象共享同一个函数
    • 静态成员函数只能访问静态成员变量

C++对象模型和this指针

成员变量和成员函数分开存储

在C++中,类内的成员变量和成员函数分开存储

只有非静态成员变量才属于类的对象上

**《非静态成员变量占对象空间
int mA;
静态成员变量不占对象空间
static int mB;》 **

class Person {
public:Person() {mA = 0;}//非静态成员变量占对象空间int mA;//静态成员变量不占对象空间static int mB; //函数也不占对象空间,所有函数共享一个函数实例void func() {cout << "mA:" << this->mA << endl;}//静态成员函数也不占对象空间static void sfunc() {}
};int main() {cout << sizeof(Person) << endl;system("pause");return 0;
}

this指针

this指针指向被调用的成员函数所属的对象

this指针是隐含每一个非静态成员函数内的一种指针

this指针不需要定义,直接使用即可

const修饰成员函数

常函数:

  • 成员函数后加const后我们称为这个函数为常函数
  • 常函数内不可以修改成员属性
  • 成员属性声明时加关键字mutable后,在常函数中依然可以修改

常对象:

  • 声明对象前加const称该对象为常对象
  • 常对象只能调用常函数
class Person {
public:Person() {m_A = 0;m_B = 0;}//this指针的本质是一个指针常量,指针的指向不可修改//如果想让指针指向的值也不可以修改,需要声明常函数void ShowPerson() const {//const Type* const pointer;//this = NULL; //不能修改指针的指向 Person* const this;//this->mA = 100; //但是this指针指向的对象的数据是可以修改的//const修饰成员函数,表示指针指向的内存空间的数据不能修改,除了mutable修饰的变量this->m_B = 100;}void MyFunc() const {//mA = 10000;}public:int m_A;mutable int m_B; //可修改 可变的
};//const修饰对象 常对象
void test01() {const Person person; //常量对象 cout << person.m_A << endl;//person.mA = 100; //常对象不能修改成员变量的值,但是可以访问person.m_B = 100; //但是常对象可以修改mutable修饰成员变量//常对象访问成员函数person.MyFunc(); //常对象不能调用const的函数}int main() {test01();system("pause");return 0;
}

友元

友元的目的就是让一个函数或者类 访问另一个类中私有成员

友元的关键字为 friend

函数调用运算符重载

  • 函数调用运算符 () 也可以重载
  • 由于重载后使用的方式非常像函数的调用,因此称为仿函数
  • 仿函数没有固定写法,非常灵活
class MyPrint
{
public:void operator()(string text){cout << text << endl;}};
void test01()
{//重载的()操作符 也称为仿函数MyPrint myFunc;myFunc("hello world");
}class MyAdd
{
public:int operator()(int v1, int v2){return v1 + v2;}
};void test02()
{MyAdd add;int ret = add(10, 10);cout << "ret = " << ret << endl;//匿名对象调用 cout << "MyAdd()(100,100) = " << MyAdd()(100, 100) << endl;
}int main() {test01();test02();system("pause");return 0;
}

继承

**继承的好处:**可以减少重复的代码

class A : public B;

A 类称为子类 或 派生类

B 类称为父类 或 基类

派生类中的成员,包含两大部分

一类是从基类继承过来的,一类是自己增加的成员。

从基类继承过过来的表现其共性,而新增的成员体现了其个性。

继承中构造和析构顺序

子类继承父类后,当创建子类对象,也会调用父类的构造函数

**总结:**继承中 先调用父类构造函数,再调用子类构造函数,析构顺序与构造相反

继续中同名函数处理

  • 访问子类同名成员 直接访问即可
  • 访问父类同名成员 需要加作用域
  1. 子类对象可以直接访问到子类中同名成员
  2. 子类对象加作用域可以访问到父类同名成员
  3. 当子类与父类拥有同名的成员函数,子类会隐藏父类中同名成员函数,加作用域可以访问到父类中同名函数

多继承

  • 菱形继承带来的主要问题是子类继承两份相同的数据,导致资源浪费以及毫无意义
  • 利用虚继承可以解决菱形继承问题

多态

多态的基本概念

多态分为两类

  • 静态多态: 函数重载 和 运算符重载属于静态多态,复用函数名
  • 动态多态: 派生类和虚函数实现运行时多态

静态多态和动态多态区别:

  • 静态多态的函数地址早绑定 - 编译阶段确定函数地址
  • 动态多态的函数地址晚绑定 - 运行阶段确定函数地址

多态满足条件

  • 有继承关系
  • 子类重写父类中的虚函数

多态使用条件

  • 父类指针或引用指向子类对象

重写:函数返回值类型 函数名 参数列表 完全一致称为重写

class Animal
{
public://Speak函数就是虚函数//函数前面加上virtual关键字,变成虚函数,那么编译器在编译的时候就不能确定函数调用了。virtual void speak(){cout << "动物在说话" << endl;}
};class Cat :public Animal
{
public:void speak(){cout << "小猫在说话" << endl;}
};class Dog :public Animal
{
public:void speak(){cout << "小狗在说话" << endl;}};
//我们希望传入什么对象,那么就调用什么对象的函数
//如果函数地址在编译阶段就能确定,那么静态联编
//如果函数地址在运行阶段才能确定,就是动态联编void DoSpeak(Animal & animal)
{animal.speak();
}
//
//多态满足条件: 
//1、有继承关系
//2、子类重写父类中的虚函数
//多态使用:
//父类指针或引用指向子类对象void test01()
{Cat cat;DoSpeak(cat);Dog dog;DoSpeak(dog);
}int main() {test01();system("pause");return 0;
}

纯虚函数和抽象类

在多态中,通常父类中虚函数的实现是毫无意义的,主要都是调用子类重写的内容

因此可以将虚函数改为纯虚函数

纯虚函数语法:virtual 返回值类型 函数名 (参数列表)= 0 ;

当类中有了纯虚函数,这个类也称为抽象类

抽象类特点

  • 无法实例化对象
  • 子类必须重写抽象类中的纯虚函数,否则也属于抽象类
class Base
{
public://纯虚函数//类中只要有一个纯虚函数就称为抽象类//抽象类无法实例化对象//子类必须重写父类中的纯虚函数,否则也属于抽象类virtual void func() = 0;
};class Son :public Base
{
public:virtual void func() {cout << "func调用" << endl;};
};void test01()
{Base * base = NULL;//base = new Base; // 错误,抽象类无法实例化对象base = new Son;base->func();delete base;//记得销毁
}int main() {test01();system("pause");return 0;
}

虚析构和纯虚函数析构

多态使用时,如果子类中有属性开辟到堆区,那么父类指针在释放时无法调用到子类的析构代码

解决方式:将父类中的析构函数改为虚析构或者纯虚析构

虚析构和纯虚析构共性:

  • 可以解决父类指针释放子类对象
  • 都需要有具体的函数实现

虚析构和纯虚析构区别:

  • 如果是纯虚析构,该类属于抽象类,无法实例化对象

虚析构语法:

virtual ~类名(){}

纯虚析构语法:

virtual ~类名() = 0;

类名::~类名(){}

class Animal {
public:Animal(){cout << "Animal 构造函数调用!" << endl;}virtual void Speak() = 0;//析构函数加上virtual关键字,变成虚析构函数//virtual ~Animal()//{// cout << "Animal虚析构函数调用!" << endl;//}virtual ~Animal() = 0;
};Animal::~Animal()
{cout << "Animal 纯虚析构函数调用!" << endl;
}//和包含普通纯虚函数的类一样,包含了纯虚析构函数的类也是一个抽象类。不能够被实例化。class Cat : public Animal {
public:Cat(string name){cout << "Cat构造函数调用!" << endl;m_Name = new string(name);}virtual void Speak(){cout << *m_Name <<  "小猫在说话!" << endl;}~Cat(){cout << "Cat析构函数调用!" << endl;if (this->m_Name != NULL) {delete m_Name;m_Name = NULL;}}public:string *m_Name;
};void test01()
{Animal *animal = new Cat("Tom");animal->Speak();//通过父类指针去释放,会导致子类对象可能清理不干净,造成内存泄漏//怎么解决?给基类增加一个虚析构函数//虚析构函数就是用来解决通过父类指针释放子类对象delete animal;
}int main() {test01();system("pause");return 0;
}

总结:

? 1. 虚析构或纯虚析构就是用来解决通过父类指针释放子类对象

? 2. 如果子类中没有堆区数据,可以不写为虚析构或纯虚析构

? 3. 拥有纯虚析构函数的类也属于抽象类

文件操作

程序运行时产生的数据都属于临时数据,程序一旦运行结束都会被释放

通过文件可以将数据持久化

C++中对文件操作需要包含头文件 < fstream >

文件类型分为两种:

  1. 文本文件 - 文件以文本的ASCII码形式存储在计算机中
  2. 二进制文件 - 文件以文本的二进制形式存储在计算机中,用户一般不能直接读懂它们

操作文件的三大类:

  1. ofstream:写操作
  2. ifstream: 读操作
  3. fstream : 读写操作

写文件

写文件步骤如下:

  1. 包含头文件

    #include <fstream>

  2. 创建流对象

    ofstream ofs;

  3. 打开文件

    ofs.open(“文件路径”,打开方式);

  4. 写数据

    ofs << “写入的数据”;

  5. 关闭文件

    ofs.close();

#include <fstream>void test01()
{ofstream ofs;ofs.open("test.txt", ios::out);ofs << "姓名:张三" << endl;ofs << "性别:男" << endl;ofs << "年龄:18" << endl;ofs.close();
}int main() {test01();system("pause");return 0;
}

总结:

  • 文件操作必须包含头文件 fstream
  • 读文件可以利用 ofstream ,或者fstream类
  • 打开文件时候需要指定操作文件的路径,以及打开方式
  • 利用<<可以向文件中写数据
  • 操作完毕,要关闭文件

读文件

读文件步骤如下:

  1. 包含头文件

    #include <fstream>

  2. 创建流对象

    ifstream ifs;

  3. 打开文件并判断文件是否打开成功

    ifs.open(“文件路径”,打开方式);

  4. 读数据

    四种方式读取

  5. 关闭文件

    ifs.close();

#include <fstream>
#include <string>
void test01()
{ifstream ifs;ifs.open("test.txt", ios::in);if (!ifs.is_open()){cout << "文件打开失败" << endl;return;}//第一种方式//char buf[1024] = { 0 };//while (ifs >> buf)//{// cout << buf << endl;//}//第二种//char buf[1024] = { 0 };//while (ifs.getline(buf,sizeof(buf)))//{// cout << buf << endl;//}//第三种//string buf;//while (getline(ifs, buf))//{// cout << buf << endl;//}char c;while ((c = ifs.get()) != EOF){cout << c;}ifs.close();}int main() {test01();system("pause");return 0;
}

总结:

  • 读文件可以利用 ifstream ,或者fstream类
  • 利用is_open函数可以判断文件是否打开成功
  • close 关闭文件
  相关解决方案