当前位置: 代码迷 >> 综合 >> 2020 cs231n 作业2笔记 Dropout
  详细解决方案

2020 cs231n 作业2笔记 Dropout

热度:54   发布时间:2024-01-31 17:12:05.0

Dropout

1、简介

dropout随机选取一定比例的单元,将其输出置为0

2、代码实现:

def dropout_forward(x, dropout_param):"""Performs the forward pass for (inverted) dropout.Inputs:- x: Input data, of any shape- dropout_param: A dictionary with the following keys:- p: Dropout parameter. We keep each neuron output with probability p.- mode: 'test' or 'train'. If the mode is train, then perform dropout;if the mode is test, then just return the input.- seed: Seed for the random number generator. Passing seed makes thisfunction deterministic, which is needed for gradient checking but notin real networks.Outputs:- out: Array of the same shape as x.- cache: tuple (dropout_param, mask). In training mode, mask is the dropoutmask that was used to multiply the input; in test mode, mask is None.NOTE: Please implement **inverted** dropout, not the vanilla version of dropout.See http://cs231n.github.io/neural-networks-2/#reg for more details.NOTE 2: Keep in mind that p is the probability of **keep** a neuronoutput; this might be contrary to some sources, where it is referred toas the probability of dropping a neuron output."""p, mode = dropout_param["p"], dropout_param["mode"]if "seed" in dropout_param:np.random.seed(dropout_param["seed"])mask = Noneout = Noneif mode == "train":######################################################################## TODO: Implement training phase forward pass for inverted dropout.   ## Store the dropout mask in the mask variable.                        ######################################################################### *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****mask = (np.random.rand(*x.shape) < p) / pout = mask * x# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****########################################################################                           END OF YOUR CODE                          ########################################################################elif mode == "test":######################################################################## TODO: Implement the test phase forward pass for inverted dropout.   ######################################################################### *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****out = x.copy()# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****########################################################################                            END OF YOUR CODE                         ########################################################################cache = (dropout_param, mask)out = out.astype(x.dtype, copy=False)return out, cache
def dropout_backward(dout, cache):"""Perform the backward pass for (inverted) dropout.Inputs:- dout: Upstream derivatives, of any shape- cache: (dropout_param, mask) from dropout_forward."""dropout_param, mask = cachemode = dropout_param["mode"]dx = Noneif mode == "train":######################################################################## TODO: Implement training phase backward pass for inverted dropout   ######################################################################### *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****dx = dout * mask# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****########################################################################                          END OF YOUR CODE                           ########################################################################elif mode == "test":dx = doutreturn dx

3、将Dropout添加到fc_net

class FullyConnectedNet(object):"""A fully-connected neural network with an arbitrary number of hidden layers,ReLU nonlinearities, and a softmax loss function. This will also implementdropout and batch/layer normalization as options. For a network with L layers,the architecture will be{affine - [batch/layer norm] - relu - [dropout]} x (L - 1) - affine - softmaxwhere batch/layer normalization and dropout are optional, and the {...} block isrepeated L - 1 times.Similar to the TwoLayerNet above, learnable parameters are stored in theself.params dictionary and will be learned using the Solver class."""def __init__(self,hidden_dims,input_dim=3 * 32 * 32,num_classes=10,dropout=1,normalization=None,reg=0.0,weight_scale=1e-2,dtype=np.float32,seed=None,):"""Initialize a new FullyConnectedNet.Inputs:- hidden_dims: A list of integers giving the size of each hidden layer.- input_dim: An integer giving the size of the input.- num_classes: An integer giving the number of classes to classify.- dropout: Scalar between 0 and 1 giving dropout strength. If dropout=1 thenthe network should not use dropout at all.- normalization: What type of normalization the network should use. Valid valuesare "batchnorm", "layernorm", or None for no normalization (the default).- reg: Scalar giving L2 regularization strength.- weight_scale: Scalar giving the standard deviation for randominitialization of the weights.- dtype: A numpy datatype object; all computations will be performed usingthis datatype. float32 is faster but less accurate, so you should usefloat64 for numeric gradient checking.- seed: If not None, then pass this random seed to the dropout layers. Thiswill make the dropout layers deteriminstic so we can gradient check themodel."""self.normalization = normalizationself.use_dropout = dropout != 1self.reg = regself.num_layers = 1 + len(hidden_dims)self.dtype = dtypeself.params = {}############################################################################# TODO: Initialize the parameters of the network, storing all values in    ## the self.params dictionary. Store weights and biases for the first layer ## in W1 and b1; for the second layer use W2 and b2, etc. Weights should be ## initialized from a normal distribution centered at 0 with standard       ## deviation equal to weight_scale. Biases should be initialized to zero.   ##                                                                          ## When using batch normalization, store scale and shift parameters for the ## first layer in gamma1 and beta1; for the second layer use gamma2 and     ## beta2, etc. Scale parameters should be initialized to ones and shift     ## parameters should be initialized to zeros.                               ############################################################################## *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****for i in range(self.num_layers):if i == 0:self.params['W1'] = np.random.randn(input_dim, hidden_dims[i]) * weight_scaleself.params['b1'] = np.zeros(hidden_dims[i])if self.normalization == "batchnorm":self.params['gamma1'] = np.random.randn(hidden_dims[i])self.params['beta1'] = np.random.randn(hidden_dims[i])elif i == self.num_layers -1:self.params['W'+str(i+1)] = np.random.randn(hidden_dims[i-1], num_classes) * weight_scaleself.params['b'+str(i+1)] = np.zeros(num_classes)else:self.params['W'+str(i+1)] = np.random.randn(hidden_dims[i-1], hidden_dims[i]) * weight_scaleself.params['b'+str(i+1)] = np.zeros(hidden_dims[i])if self.normalization == "batchnorm":self.params['gamma'+str(i+1)] = np.random.randn(hidden_dims[i])self.params['beta'+str(i+1)] = np.random.randn(hidden_dims[i])# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****#############################################################################                             END OF YOUR CODE                             ############################################################################## When using dropout we need to pass a dropout_param dictionary to each# dropout layer so that the layer knows the dropout probability and the mode# (train / test). You can pass the same dropout_param to each dropout layer.self.dropout_param = {}if self.use_dropout:self.dropout_param = {"mode": "train", "p": dropout}if seed is not None:self.dropout_param["seed"] = seed# With batch normalization we need to keep track of running means and# variances, so we need to pass a special bn_param object to each batch# normalization layer. You should pass self.bn_params[0] to the forward pass# of the first batch normalization layer, self.bn_params[1] to the forward# pass of the second batch normalization layer, etc.self.bn_params = []if self.normalization == "batchnorm":self.bn_params = [{"mode": "train"} for i in range(self.num_layers - 1)]if self.normalization == "layernorm":self.bn_params = [{} for i in range(self.num_layers - 1)]# Cast all parameters to the correct datatypefor k, v in self.params.items():self.params[k] = v.astype(dtype)def loss(self, X, y=None):"""Compute loss and gradient for the fully-connected net.Input / output: Same as TwoLayerNet above."""X = X.astype(self.dtype)mode = "test" if y is None else "train"# Set train/test mode for batchnorm params and dropout param since they# behave differently during training and testing.if self.use_dropout:self.dropout_param["mode"] = modeif self.normalization == "batchnorm":for bn_param in self.bn_params:bn_param["mode"] = modescores = None############################################################################# TODO: Implement the forward pass for the fully-connected net, computing  ## the class scores for X and storing them in the scores variable.          ##                                                                          ## When using dropout, you'll need to pass self.dropout_param to each       ## dropout forward pass.                                                    ##                                                                          ## When using batch normalization, you'll need to pass self.bn_params[0] to ## the forward pass for the first batch normalization layer, pass           ## self.bn_params[1] to the forward pass for the second batch normalization ## layer, etc.                                                              ############################################################################## *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****x = X.copy()#cache = []#cache_relu = []#{affine - [batch/layer norm] - relu - [dropout]} x (L - 1) - affine - softmaxfor i in range(self.num_layers - 1):w = self.params['W'+str(i+1)]b = self.params['b'+str(i+1)]x, cache_temp = affine_forward(x, w, b)#cache.append(cache_temp)if self.normalization == "batchnorm":gamma = self.params['gamma'+str(i+1)]beta = self.params['beta'+str(i+1)]bn_param = self.bn_params[i]x, cache_temp = batchnorm_forward(x, gamma, beta, bn_param)x, cache_temp = relu_forward(x)#cache_relu.append(cache_temp)w = self.params['W'+str(self.num_layers)]b = self.params['b'+str(self.num_layers)]scores, cache_temp = affine_forward(x, w, b)# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****#############################################################################                             END OF YOUR CODE                             ############################################################################## If test mode return earlyif mode == "test":return scoresloss, grads = 0.0, {}############################################################################# TODO: Implement the backward pass for the fully-connected net. Store the ## loss in the loss variable and gradients in the grads dictionary. Compute ## data loss using softmax, and make sure that grads[k] holds the gradients ## for self.params[k]. Don't forget to add L2 regularization!               ##                                                                          ## When using batch/layer normalization, you don't need to regularize the scale   ## and shift parameters.                                                    ##                                                                          ## NOTE: To ensure that your implementation matches ours and you pass the   ## automated tests, make sure that your L2 regularization includes a factor ## of 0.5 to simplify the expression for the gradient.                      ############################################################################## *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****#do forward propagationx = X.copy()cache = []cache_bp = []cache_relu = []cache_dropout = []#{affine - [batch/layer norm] - relu - [dropout]} x (L - 1) - affine - softmaxfor i in range(self.num_layers - 1):w = self.params['W'+str(i+1)]b = self.params['b'+str(i+1)]x, cache_temp = affine_forward(x, w, b)cache.append(cache_temp)if self.normalization == "batchnorm":gamma = self.params['gamma'+str(i+1)]beta = self.params['beta'+str(i+1)]bn_param = self.bn_params[i]x, cache_temp = batchnorm_forward(x, gamma, beta, bn_param)cache_bp.append(cache_temp)x, cache_temp = relu_forward(x)cache_relu.append(cache_temp)if self.use_dropout:x, cache_temp = dropout_forward(x, self.dropout_param)cache_dropout.append(cache_temp)w = self.params['W'+str(self.num_layers)]b = self.params['b'+str(self.num_layers)]scores, cache_temp = affine_forward(x, w, b)cache.append(cache_temp)loss, dscores = softmax_loss(scores, y)for i in range(self.num_layers):w = self.params['W'+str(i+1)]loss += 0.5 * self.reg * np.sum(w * w)#do backward propagationdx, dw, db = affine_backward(dscores, cache.pop())grads['W'+str(self.num_layers)] = dw + self.reg * self.params['W'+str(self.num_layers)]grads['b'+str(self.num_layers)] = dbfor i in range(self.num_layers - 1)[::-1]:if self.use_dropout:dx = dropout_backward(dx, cache_dropout.pop())dx = relu_backward(dx, cache_relu.pop())if self.normalization == "batchnorm":dx, dgamma, dbeta = batchnorm_backward_alt(dx, cache_bp.pop())grads['gamma'+str(i+1)] = dgamma grads['beta'+str(i+1)] = dbeta dx, dw, db = affine_backward(dx, cache.pop())grads['W'+str(i+1)] = dw + self.reg * self.params['W'+str(i+1)]grads['b'+str(i+1)] = db# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****#############################################################################                             END OF YOUR CODE                             #############################################################################return loss, grads