当前位置: 代码迷 >> 综合 >> 【弄nèng - Skywalking】入门篇(一)—— Skywalking安装与使用
  详细解决方案

【弄nèng - Skywalking】入门篇(一)—— Skywalking安装与使用

热度:12   发布时间:2024-01-30 08:10:27.0

文章目录

    • 一. 简介
    • 二. Skywalking架构
    • 三. 安装OAP
      • 3.1 前置
      • 3.2 下载
      • 3.3 修改配置application.yml
      • 3.4 webapp配置
      • 3.5 启动
    • 四. 使用Agent
      • 4.1 修改配置
      • 4.2 启动工程接入Agent
    • 项目推荐

该篇博客是Skywalking的安装使用
官方文档:
https://github.com/apache/skywalking/tree/master/docs

参考https://www.jianshu.com/p/8b9aad4210c5

一. 简介

Skywalking概念相关的介绍请看官方文档官方文档

Skywalking用于分布式系统的应用程序性能监视工具,特别为微服务、云本机和基于容器(Docker, K8s, Mesos)架构设计。

二. Skywalking架构

在这里插入图片描述
从逻辑上讲,SkyWalking分为四个部分

  • 探针(Agent):收集数据并重新格式化以符合SkyWalking的要求(不同的探针支持不同的来源)。
  • 后端(Oap):支持数据聚合,分析并驱动从探针到UI的流程。该分析包括SkyWalking本机跟踪和度量,第三方,包括Istio和Envoy遥测,Zipkin跟踪格式等。您甚至可以通过使用针对本机度量的Observability Analysis Language和针对扩展度量的Meter System来定制聚合和分析。
  • 存储:通过开放/可插入的界面存储SkyWalking数据。您可以选择现有的实现,例如ElasticSearch,H2或由Sharding-Sphere管理的MySQL集群,也可以实现自己的实现。欢迎为新的存储实现者打补丁!
  • UI:是一个高度可定制的基于Web的界面,允许SkyWalking最终用户可视化和管理SkyWalking数据。

后端(Oap)又分为三个角色

  • 混合Mixed(默认):默认角色,OAP应承担以下责任,1.接收代理跟踪或指标,2.进行L1聚合,3.内部通讯(发送/接收),4.进行L2聚合,5.持久化,6.报警
  • 接收者Receiver:1.接收代理跟踪或指标,2.进行L1聚合,3.内部通讯(发送/接收)
  • 聚合器Aggregator:4.进行L2聚合,5.持久化,6.报警

可以利用Receiver和Aggregator进行高级部署,来区分节点责任,缓解压力、
注意:Receiver节点也可以进行持久化,继承Record类的实体在进行L1聚合时持久化

三. 安装OAP

3.1 前置

本教程使用的是最新版8.0.1,使用的数据源是es7,如果你要部署集群环境就适用zookeeper
所以需要安装es7和zk(可选,集群需要)
请自行安装,本教程重点是skywalking

3.2 下载

点击进入下载页
下载最新版8.0.1
在这里插入图片描述
解压后
在这里插入图片描述

3.3 修改配置application.yml

在这里插入图片描述

/config/application.yml部分配置

cluster:selector: ${SW_CLUSTER:standalone}# 单节点模式standalone:# zk用于管理collector集群协作.# zookeeper:# 多个zk连接地址用逗号分隔.# hostPort: localhost:2181# sessionTimeout: 100000# 分布式 kv 存储设施,类似于zk,但没有zk重型(除了etcd,consul、Nacos等都是类似功能)# etcd:# serviceName: ${SW_SERVICE_NAME:"SkyWalking_OAP_Cluster"}# 多个节点用逗号分隔, 如: 10.0.0.1:2379,10.0.0.2:2379,10.0.0.3:2379# hostPort: ${SW_CLUSTER_ETCD_HOST_PORT:localhost:2379}
core:selector: ${SW_CORE:default}default:# 混合角色:接收代理数据,1级聚合、2级聚合# 接收者:接收代理数据,1级聚合点# 聚合器:2级聚合点role: ${SW_CORE_ROLE:Mixed} # Mixed/Receiver/Aggregator# rest 服务地址和端口restHost: ${SW_CORE_REST_HOST:localhost}restPort: ${SW_CORE_REST_PORT:12800}restContextPath: ${SW_CORE_REST_CONTEXT_PATH:/}# gRPC 服务地址和端口gRPCHost: ${SW_CORE_GRPC_HOST:localhost}gRPCPort: ${SW_CORE_GRPC_PORT:11800}downsampling:- Hour- Day- Month# 设置度量数据的超时。超时过期后,度量数据将自动删除.# 单位分钟recordDataTTL: ${SW_CORE_RECORD_DATA_TTL:90}# 单位分钟minuteMetricsDataTTL: ${SW_CORE_MINUTE_METRIC_DATA_TTL:90}# 单位小时hourMetricsDataTTL: ${SW_CORE_HOUR_METRIC_DATA_TTL:36}# 单位天dayMetricsDataTTL: ${SW_CORE_DAY_METRIC_DATA_TTL:45}# 单位月monthMetricsDataTTL: ${SW_CORE_MONTH_METRIC_DATA_TTL:18}storage:selector: ${SW_STORAGE:elasticsearch7}elasticsearch7:# elasticsearch 的集群名称nameSpace: ${SW_NAMESPACE:"TEST-ES"}# elasticsearch 集群节点的地址及端口clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:192.168.1.1:9200}# elasticsearch 的用户名和密码user: ${SW_ES_USER:""}password: ${SW_ES_PASSWORD:""}# 设置 elasticsearch 索引分片数量indexShardsNumber: ${SW_STORAGE_ES_INDEX_SHARDS_NUMBER:2}# 设置 elasticsearch 索引副本数indexReplicasNumber: ${SW_STORAGE_ES_INDEX_REPLICAS_NUMBER:0}# 批量处理配置# 每2000个请求执行一次批量bulkActions: ${SW_STORAGE_ES_BULK_ACTIONS:2000}# 每 20mb 刷新一次内存块bulkSize: ${SW_STORAGE_ES_BULK_SIZE:20}# 无论请求的数量如何,每10秒刷新一次堆flushInterval: ${SW_STORAGE_ES_FLUSH_INTERVAL:10}# 并发请求的数量concurrentRequests: ${SW_STORAGE_ES_CONCURRENT_REQUESTS:2}# elasticsearch 查询的最大数量metadataQueryMaxSize: ${SW_STORAGE_ES_QUERY_MAX_SIZE:5000}# elasticsearch 查询段最大数量segmentQueryMaxSize: ${SW_STORAGE_ES_QUERY_SEGMENT_SIZE:200}profileTaskQueryMaxSize: ${SW_STORAGE_ES_QUERY_PROFILE_TASK_SIZE:200}advanced: ${SW_STORAGE_ES_ADVANCED:""}

主要修改,SW_CLUSTER, SW_CORE_ROLESW_STORAGESW_NAMESPACESW_STORAGE_ES_CLUSTER_NODES

  • SW_CLUSTER 默认standalone单机模式
  • SW_CORE_ROLE 默认Mixed混合模式
  • SW_STORAGE 存储,我使用的是es7,所以设置成elasticsearch7
  • SW_NAMESPACE es的namespace
  • SW_STORAGE_ES_CLUSTER_NODES es地址,多个地址以分割

3.4 webapp配置

可以在这里修改前端工程端口,默认8080
webapp/webapp.yml

server:port: 8080collector:path: /graphqlribbon:ReadTimeout: 10000# Point to all backend's restHost:restPort, split by ,listOfServers: 127.0.0.1:12800

3.5 启动

进入bin目录,执行启动文件,windows下startup.bat,linux为startup.shstartup.bat包含后端启动文件oapService.bat和前端启动文件webappService.bat

后端工程会启动两个端口1180012800,大多数代理使用11800端口,只有少数不支持grpc的代理使用12800
前端工程使用12800

启动成功后访问http://localhost:8080显示如下:
在这里插入图片描述

四. 使用Agent

Agent官方文档

4.1 修改配置

有两种方式配置,1. 在配置文件中修改,2.在启动时传入环境变量。我们使用第二种,所以此处不修改

/agent/config/agent.config主要配置

# 不同的namespace会导致调用链路追踪中断
agent.namespace=${SW_AGENT_NAMESPACE:default-namespace}# 页面上展示的service的名称,也可以通过-Dskywalking.agent.service_name=xxx指定
agent.service_name=${SW_AGENT_NAME:service-pfm}# 平台的调用地址,也可以通过-Dskywalking.collector.backend_service=127.0.0.1:11800指定
collector.backend_service=${SW_AGENT_COLLECTOR_BACKEND_SERVICES:127.0.0.1:11800}# 忽略指定后缀的请求收集
agent.ignore_suffix=${SW_AGENT_IGNORE_SUFFIX:.jpg,.jpeg,.js,.css,.png,.bmp,.gif,.ico,.mp3,.mp4,.html,.svg}# 每3秒的采样率,负数代表100%
agent.sample_n_per_3_secs=${SW_AGENT_SAMPLE:-1}

注意:如果Collector以集群方式部署,比如:Acollector和Bcollector,建议Acollector.sampleRate = Bcollector.sampleRate

4.2 启动工程接入Agent

在jvm启动参数上添加

-javaagent:/var/local/apache-skywalking-apm-bin/agent/skywalking-agent.jar

完整的启动命令

java -javaagent:/var/local/apache-skywalking-apm-bin/agent/skywalking-agent.jar -Dskywalking.agent.service_name=service-pfm   -Dskywalking.collector.backend_service=127.0.0.1:11800  -jar simple-skywalking-test.jar

IDEA中启动
在这里插入图片描述
添加参数,直接正常启动就可以了

启动成功后访问API,页面会看到数据

排错需要观察agent的日志,路径为/agent/logs/skywalking-api.log
和skywalking的运行日志,路径为logs/skywalking-oap-server.log


项目推荐

IT-CLOUD :IT服务管理平台,集成基础服务,中间件服务,监控告警服务等。
IT-CLOUD-ACTIVITI6 :Activiti教程源码。博文在本CSDN Activiti系列中。
IT-CLOUD-ELASTICSEARCH :elasticsearch教程源码。博文在本CSDN elasticsearch系列中。
IT-CLOUD-KAFKA :spring整合kafka教程源码。博文在本CSDN kafka系列中。
IT-CLOUD-KAFKA-CLIENT :kafka client教程源码。博文在本CSDN kafka系列中。

开源项目,持续更新中,喜欢请 Star~