博客园同步
原题链接
简要题意:
给定一个 个点的无向图,有边权。有 个仓库,每个点属于一个仓库。
你需要选定 个仓库其中的一个使得所有点到它的最短路上的边权之和最小。求这个最小的和。
.
一看到 ,算法很明显。有两种解决方案。
算法一
利用 .
可以用 的时间求出两两最短路。
下面大力统计即可。
时间复杂度: .
实际得分: .
算法二
利用 $.
同样是求两两点最短,考虑 次单源,用 做到 .
实际上这东西跑不满。
时间复杂度: .
实际得分: .(不可能跑满啊)
#include<bits/stdc++.h>
using namespace std;inline int read(){char ch=getchar();int f=1; while(!isdigit(ch)) {if(ch=='-')f=-f; ch=getchar();}int x=0;while(isdigit(ch)) x=(x<<3)+(x<<1)+ch-'0',ch=getchar(); return x*f;}int n,p,c;
vector<pair<int,int> >G[2001];
int dis[2001],vis[2001],a[2001];inline int SPFA(int stc) { //SPFA 单源求出所有点到 stc 的最短路queue<int>q;memset(dis,0x3f,sizeof(dis)); dis[stc]=0; vis[stc]=1;q.push(stc);while(!q.empty()) {int u=q.front(); q.pop(); vis[u]=0;for(int i=0;i<G[u].size();i++) {int v=G[u][i].first,c=G[u][i].second;if(dis[v]>dis[u]+c) {dis[v]=dis[u]+c;if(!vis[v]) {vis[v]=1; q.push(v);}}}}int s=0;for(int i=1;i<=n;i++) s+=dis[a[i]];return s; //统计当前仓库的答案
}int main(){n=read(),p=read(),c=read();for(int i=1;i<=n;i++) a[i]=read();for(int i=1;i<=c;i++) {int u=read(),v=read(),w=read();G[u].push_back(make_pair(v,w));G[v].push_back(make_pair(u,w));}int mini=INT_MAX;for(int i=1;i<=p;i++) mini=min(mini,SPFA(i));printf("%d\n",mini); //最小答案return 0;
}
算法三
考虑数据加强: .
同样求两两最短路,用 次 即可做到 .
时间复杂度: .
实际得分: .