当前位置: 代码迷 >> 综合 >> chapter 6 deep feed forward networks
  详细解决方案

chapter 6 deep feed forward networks

热度:27   发布时间:2024-01-20 19:52:11.0

chapter 6 deep feed forward networks

chapter 6.1 example learning xor

J(Θ)=14xx(f?(x)?f(x;Θ))2

now we must chose our model f(x;Θ) ,
linear model
f(x;w,b)=xTw+b
it can not describe the xor logic

add a hidden linear layer
h=f1(x;W,c) , y=f2(h;w,b)
f(x;W,c,w,b)=f2(f1(x))

f1(x)=WTx and f2(h)=hTw
we get f(x)=wTWTx .

clearly, we must use a nonlinear layer to represent the features.

ReLU
rectified linear unit
f(x;W,c,w,b)=wTmax{ 0,WTx+c}+b

W=[1111]
c=[0?1]
w=[1?2]

calculate
x=?????00110101?????
xW=?????01120112?????
xW+c=?????0112?1001?????
ReLU ?????01120001?????
wTh=?????0110?????

get it

chapter 6.2 gradient based learning

chapter 6.3 hidden units

chapter 6.4 architecture design

  相关解决方案