Description
跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道。为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费。 农场中由N(1 <= N <= 250)片草地(标号为1到N),并且有M(1 <= M <= 10000)条 双向道路连接草地A_j和B_j(1 <= A_j <= N; 1 <= B_j <= N)。奶牛们从任意一片草 地出发可以抵达任意一片的草地。FJ已经在连接A_j和B_j的双向道路上设置一个过路费L_j (1 <= L_j <= 100,000)。 可能有多条道路连接相同的两片草地,但是不存在一条道路连接一片草地和这片草地本身。最 值得庆幸的是,奶牛从任意一篇草地出发,经过一系列的路径,总是可以抵达其它的任意一片 草地。 除了贪得无厌,叫兽都不知道该说什么好。FJ竟然在每片草地上面也设置了一个过路费C_i (1 <= C_i <= 100000)。从一片草地到另外一片草地的费用,是经过的所有道路的过路 费之和,加上经过的所有的草地(包括起点和终点)的过路费的最大值。 任劳任怨的牛们希望去调查一下她们应该选择那一条路径。她们要你写一个程序,接受K(1 <= K <= 10,000)个问题并且输出每个询问对应的最小花费。第i个问题包含两个数字s_i 和t_i(1 <= s_i <= N; 1 <= t_i <= N; s_i != t_i),表示起点和终点的草地。 考虑下面这个包含5片草地的样例图像: 从草地1到草地3的道路的“边过路费”为3,草地2的“点过路费”为5。 要从草地1走到草地4,可以从草地1走到草地3再走到草地5最后抵达草地4。如果这么走的话, 需要的“边过路费”为2+1+1=4,需要的点过路费为4(草地5的点过路费最大),所以总的花 费为4+4=8。 而从草地2到草地3的最佳路径是从草地2出发,抵达草地5,最后到达草地3。这么走的话,边 过路费为3+1=4,点过路费为5,总花费为4+5=9。
Input
* 第1行: 三个空格隔开的整数: N, M和K * 第2到第N+1行: 第i+1行包含一个单独的整数: C_i * 第N+2到第N+M+1行: 第j+N+1行包含3个由空格隔开的整数: A_j, B_j和L_j * 第N+M+2倒第N+M+K+1行: 第i+N+M+1行表示第i个问题,包含两个由空格隔开的整数s_i 和t_i
Output
* 第1到第K行: 第i行包含一个单独的整数,表示从s_i到t_i的最小花费。
Sample Input
5 7 2
2
5
3
3
4
1 2 3
1 3 2
2 5 3
5 3 1
5 4 1
2 4 3
3 4 4
1 4
2 3
2
5
3
3
4
1 2 3
1 3 2
2 5 3
5 3 1
5 4 1
2 4 3
3 4 4
1 4
2 3
Sample Output
8
9
9
HINT
Source
Gold
floyd+思路~
因为n<=250,所以我们可以用floyd。但是这道题比普通的floyd多了一个最大点权,我们就要把所有点按照点权排序,这样在floyd的时候我们就只需要比较i,j,z三点的点权从而得出结果了,思路相当神奇啊~
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;int n,m,k,x,y,kk,a[251][251],f[251][251];struct node{int val,id;
}v[251];int read()
{int x=0,f=1;char ch=getchar();while(ch<'0' || ch>'9') {if(ch=='-') f=-1;ch=getchar();}while(ch>='0' && ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;
}bool operator < (node u,node v)
{return u.val<v.val;
}int main()
{n=read();m=read();k=read();for(int i=1;i<=n;i++) v[i]=(node){read(),i};memset(a,127/3,sizeof(a));memset(f,127/3,sizeof(f));for(int i=1;i<=n;i++) f[i][i]=v[i].val;sort(v+1,v+n+1);for(int i=1;i<=m;i++){x=read();y=read();kk=read();a[x][y]=a[y][x]=min(a[x][y],kk);}for(int z=1;z<=n;z++)for(int i=1;i<=n;i++)for(int j=1;j<=n;j++){kk=v[z].id;x=v[i].id;y=v[j].id;a[x][y]=a[y][x]=min(a[x][y],a[x][kk]+a[kk][y]);f[x][y]=f[y][x]=min(f[x][y],a[x][y]+max(v[z].val,max(v[i].val,v[j].val)));}while(k--){x=read();y=read();printf("%d\n",f[x][y]);}return 0;
}